蓝桥杯-青蛙跳杯子(bfs, python)

本文介绍了一道X星球青蛙跳杯子的问题,其中青蛙可以跳到相邻、隔一只或隔两只青蛙的空杯中。为了解决这个问题,提出了采用宽度优先搜索(BFS)而非深度优先搜索(DFS)的原因,因为DFS可能导致深搜,而BFS更适合寻找最优解。通过建立搜索树并使用字典存储已搜索过的状态进行剪枝,最终得出从初始局面到目标局面所需的最少步数。代码中详细展示了如何实现这一算法,包括关键的搜索过程和剪枝操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目 1878: 蓝桥杯2017年第八届真题-青蛙跳杯子
时间限制: 1Sec 内存限制: 128MB 提交: 602 解决: 265
题目描述
X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色。
X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去。
如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙。

*WWWBBB

其中,W字母表示白色青蛙,B表示黑色青蛙,*表示空杯子。

X星的青蛙很有些癖好,它们只做3个动作之一:

  1. 跳到相邻的空杯子里。
  2. 隔着1只其它的青蛙(随便什么颜色)跳到空杯子里。
  3. 隔着2只其它的青蛙(随便什么颜色)跳到空杯子里。

对于上图的局面,只要1步,就可跳成下图局面:

WWW*BBB

本题的任务就是已知初始局面,询问至少需要几步,才能跳成另一个目标局面。

输入
输入为2行,2个串,表示初始局面和目标局面。
输出
输出要求为一个整数,表示至少需要多少步的青蛙跳。
样例输入

*WWBB
WWBB*

样例输出

2

二、思路和代码

思路:因为这道题用深度优先可能达到很深的位置(可以不停地生成很长的路径),加上这道题求的是最优解,所以采用宽度优先。
技巧:使用dict存搜索过的结点,用以剪枝。(其实用set可能更快,因为查看是否在set当中是用的哈希查找,时间是O(n))。

begin = list(input())
end = list(input())
n = len(begin)
# 深度优先搜索错!因为这道题广度不大,深度很大!
# searched记录该局面到结果的最优步数
searched = dict()

# 宽度优先,存当前状态和到该状态的步数【state, steps】
qu = []
qu.append(begin+[0])
res = 0
while len(qu) != 0:
    state = qu.pop()
    state, steps = state[0:-1], state[-1]
    stateStr = "".join(state)
    # 到达目标
    if state == end:
        res = steps
        break
    # 搜索过
    elif stateStr in searched.keys():
        continue
    else:
        # 加入搜索过
        searched[stateStr] = 1
        # *和i位置交换,将[state,steps]加入qu
        pos = state.index("*")
        for i in range(max(0, pos - 3), min(n - 1, pos + 3) + 1):
            state[pos], state[i] = state[i], state[pos]
            qu.insert(0, state[:]+[steps+1])
            state[pos], state[i] = state[i], state[pos]
                    
print(res)

### 蓝桥杯 青蛙杯子 Python 解题方法 #### 算法思路 对于此类问题,广度优先搜索 (BFS) 是较为合适的解决方案。通过 BFS 可以有效地找到从起始位置到达目标位置所需的最小步数。该算法能够逐层扩展节点,确保最先达到终点的是最优路径。 具体来说,在处理青蛙杯子的问题时: - 将每种可能的状态表示成一个元组 `(current_position, steps)` ,其中 `current_position` 表示当前所在的位置,而 `steps` 则记录了已经走过的步数。 - 使用队列来存储待探索的状态,并初始化为起点处的一个状态。 - 对于每一个被取出的队首元素,尝试向其能跃的所有合法方向前进;如果新位置未访问过,则将其加入队尾继续考察。 - 当遇到终止条件即达到了最终的目标位置时停止迭代并输出结果。 这种方法可以保证求得的结果是最优解之一[^2]。 #### 代码实现 下面是一个基于上述思想编写的 Python 实现方案: ```python from collections import deque def min_steps_to_reach_end(start, end, jump_distances): visited = set() # 记录已访问的位置防止重复计算 queue = deque([(start, 0)]) # 初始化队列为[(当前位置, 已经走了几步)] while queue: pos, step_count = queue.popleft() if pos == end: # 如果找到了出口则返回所需步数 return step_count for distance in jump_distances:# 枚举所有可选移动距离 next_pos = pos + distance if next_pos not in visited and 0 <= next_pos <= end: visited.add(next_pos) queue.append((next_pos, step_count + 1)) raise ValueError("No path found") # 若无法抵达目的地抛出异常 # 示例调用 jump_distances = [-3,-2,-1,1,2,3] # 假设允许向前或向后最多三个单位 print(min_steps_to_reach_end(0, 5, jump_distances)) ``` 此段程序实现了基本框架下的广搜过程,可以根据实际比赛中的输入数据调整参数完成特定任务需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值