亲爱的小伙伴们😘,在求知的漫漫旅途中,若你对深度学习的奥秘、Java 与 Python 的奇妙世界,亦或是读研论文的撰写攻略有所探寻🧐,那不妨给我一个小小的关注吧🥰。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享🎁。每一个点赞👍,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟🤗!
YOLO(You Only Look Once)是一种实时目标检测模型,由Joseph Redmon等人于2015年提出。与传统的目标检测方法相比,YOLO具有以下特点:
1. 实时性
- YOLO将目标检测作为单一回归问题处理,能够实现实时检测,速度快于当时其他目标检测方法。
2. 端到端训练
- YOLO模型训练时直接从原始图像像素预测边界框和类别概率,不需要复杂的预处理步骤。
3. 全局视野
- YOLO在进行检测时,对整个图像进行卷积操作,能够捕捉图像的全局信息,减少错误检测。
4.YOLO的版本
YOLO模型经历了多个版本的迭代,每个版本都在前一版本的基础上进行了改进和优化。以下是YOLO的主要版本:
YOLOv1
- 提出时间:2015年
- 主要贡献:首次将目标检测问题定义为单个回归问题,能够实现实时目标检测。
YOLOv2
- 提出时间:2016年
- 主要贡献:引入了锚点(Anchor)概念,提升了检测精度;使用多尺度训练方法,提升了模型的泛化能力。
YOLOv3
- 提出时间:2018年