基于jetson orin nano jetpack512模块上安装pycuda
1、安装依赖
sudo apt update
sudo apt-get install build-essential python3-dev python3-pip libboost-all-dev libpython3-dev python3-setuptools libncurses5-dev libreadline-dev libffi-dev gfortran
可使用nvcc --version查看是否有信息输出,若没有,且安装cuda的情况下,需要手动将CUDA 的路径添加到环境变量中
vim ~/.bashrc
#在文件末尾加入如下内容(cuda版本要与当前版本匹配)
export PATH=/usr/local/cuda-11.4/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH
2、进入conda环境并安装cuda工具包
conda install cudatoolkit=11.4 -c nvidia
3、安装numpy
pip install numpy
4、获取pycuda源码(版本根据实际情况获取)
git clone --branch v2022.2 https://github.com/inducer/pycuda.git
cd pycuda
5、配置编译并设置环境变量
#运行 configure.py 并指定 CUDA 路径(通常在 /usr/local/cuda):
python3 configure.py --cuda-root=/usr/local/cuda
#设置环境变量
export PATH=/usr/local/cuda-11.4/bin:$PATH
export CUDADIR=/usr/local/cuda-11.4
6、编译
make -j$(nproc)
编译生成_pvt_struct.cpython-38-aarch64-linux-gnu.so文件
7、编译成功后安装pycuda
sudo python3 setup.py install
8、测试安装
python3 -c "import pycuda.driver as cuda; cuda.init(); print(cuda.Device(0).name())"
#输出应为 Jetson 的 GPU 名称(如 NVIDIA Orin)
9、若未检测出来需要清除并强制编译
清除强制编译
python3 setup.py clean
python3 setup.py build
python3 setup.py install
10、再次验证
python3 -c "import pycuda.driver as cuda; cuda.init(); print(cuda.Device(0).name())"
输出结果如图所示即为安装配置成功 。