算法的时间复杂度和空间复杂度
一个算法的好坏我们主要从"时间"和"空间" 两个维度来衡量
时间维度:是指执行当前算法所消耗的时间,我们通常用 “时间复杂度” 来描述。
空间维度:是指执行当前算法需要占用多少内存空间,我们通常用 “空间复杂度” 来描述。
1. 时间复杂度
我们先来看一个简单的例子
public class TimeCompare {
public static void main(String[] args) {
int num1=0;
int num2=0;
//计算1-1000的和-循环求和
long start1 = System.currentTimeMillis();
for(int i=1;i<=100000;i++){
num1+=i;
}
long start2 = System.currentTimeMillis();
//前n项和公式:(首项+末项)*项数/2
long start3 = System.currentTimeMillis();
num2=(1+100000)*100000/2;
long start4 = System.currentTimeMillis();
System.out.println("num1:"+num1+" 时间:"+(start2-start1)+"ms");
System.out.println("num2:"+num2+" 时间:"+(start4-start3)+"ms");
}
}
结果:
num1:705082704 时间:3ms
num2:705082704 时间:0ms
两种方法都可以算出前n项和,但是时间上面却是天壤之别
上面我们通过运行程序得到的时间并不能真正表示时间复杂度,因为程序的运行会受计算机和运行环境的影响
大O符号表示法:
我们一般用 “算法的渐进时间复杂度” 衡量时间复杂度 即:T(n) = O(f(n))
解释: f(n) 表示每行代码执行次数之和
举个栗子:
for(int i=0;i<n;i++){System.out.println("时间复杂度")}
时间复杂度为n,因为输出语句会执行n次
注意:我们求时间复杂度时,直接保留最高次的即可,并且最高次的系数可以省略,常数也可以省略
如:3n^2+2n+1我们会写为:T(n)=n^2
常见的时间复杂度量级有:
-
常数阶O(1) 只要没有循环等复杂结构就是常数阶
-
对数阶O(logN)
//跳出循环需要 2^X=n 即 X=logN(2为底) 事件复杂度为:O(logN) int i = 1; while(i<n) { i = i * 2; }
-
线性阶O(n) n次循环就是线性阶
-
线性对数阶O(nlogN) n次对数阶
-
平方阶O(n²)
-
立方阶O(n³)
-
K次方阶O(n^k)
-
指数阶(2^n)
从上到下时间复杂度依次变大,程序效率变低
2. 空间复杂度
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的一个量度,同样反映的是一个趋势,我们用
S(n) =O(fn)来定义。
空间复杂度常用的有:O(1)、O(n)、O(n^2)、O(n^3)…
例:
算法执行需要的临时空间不会随着某个变量n的变化而变化,
此时空间复杂度为常量:即S(n)=O(1)
//S(n)=O(1)
int i=0;
i++;
int j=0,k=1;
//空间复杂度为:S(n)=O(n)
int[] arr=new int[n];
for(int i=0;i<arr.length;i++){
arr[i]=i;
}
空间复杂度再看只看占用空间(内存)大小-即声明的变量,和执行次数无关