【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】线性回归

回归问题属于机器学习中较为简单的一类问题。对于回归问题,训练集要包含输入和输出x(n),y(n)n=1N{x^{(n)},y^{(n)}}_{n=1}^Nx(n),y(n)n=1N。其中输入x(n)x^{(n)}x(n)一般为D维向量,记作x(n)∈RDx^{(n)}\in\mathbb{R}^Dx(n)RD;输出y(n)y^{(n)}y(n) 为连续的标量,记作y(n)∈Ry^{(n)}\in\mathbb{R}y(n)R。回归问题即求解x,yx,yx,y之间的映射关系,记为y=f(x,θ)y=f(x,\theta)y=f(x,θ)

模型

线性回归问题是回归问题中比较简单的一种,其模型为:
f(x;w,b)=wT+b f(x;w,b)=w^T+b f(x;w,b)=wT+b
其中www一般叫做权重(weight),bbb叫做偏置(bias)。事实上,可以通过利用增广权重向量增广特征向量来消除偏置。
增广权重向量是指在权重www的基础上增加一个维度来表示偏置:
w^=w⊕b≜[wb]=[w1⋮wDb] \hat{w}=w\oplus{b}\triangleq \left[\begin{array}{}\\ w\\ \\ b \end{array}\right]= \left[\begin{array}{} w_1\\ \vdots\\ w_D\\ b \end{array}\right] w^=wb wb = w1wDb
增广特征向量是指在特征向量xxx上添加一个值为1的维度,用来与增广权重向量在维度上保持相同以进行运算:
x^=x⊕1≜[x1⋮xD1] \hat{x}=x\oplus1\triangleq \left[\begin{array}{} x_1\\ \vdots\\ x_D\\ 1 \end{array}\right] x^=x1 x1xD1
经过变换后原式变化如下
f(x;w,b)=wTx+b=[w1⋯wD]⋅[x1⋮xD]+b=w1x1+⋯+wDxD+b=[w1⋯wD  b]⋅[x1⋮x21]=w^T⋅x^=f(x^,w^) \begin{aligned} f(x;w,b) & =w^Tx+b\\ & =\left[\begin{array}{} w_1\cdots w_D \end{array}\right] \cdot \left[\begin{array}{} x_1\\ \vdots\\ x_D \end{array}\right]+b \\ & =w_1x_1+\cdots+w_Dx_D+b \\ & =\left[\begin{array}{} w_1\cdots w_D\ \ b \end{array}\right]\cdot\left[\begin{array}{} x_1\\ \vdots\\ x_2\\ 1 \end{array}\right]\\ & =\hat{w}^T\cdot \hat{x} = f(\hat{x}, \hat{w}) \end{aligned} f(x;w,b)=wTx+b=[w1wD] x1xD +b=w1x1++wDxD+b=[w1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Don't move

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值