前言
《3D Bounding Box Estimation Using Deep Learning and Geometry》展示了如何从单一视图中恢复已知对象类别的3D边界框。通过使用新颖的MultiBin损失进行方向预测和有效地选择边界框尺寸作为回归参数,该方法能够在没有额外的3D形状模型或复杂预处理管道的情况下估计稳定且准确的3D边界框。提出了未来的研究方向,包括将立体视觉和视频序列信息整合到方法中。
环境配置
环境配置同YOLO系列的安装方式一致,这里不做介绍。
代码测试
模型下载
python weights/get_weights.py
推理
python inference.py
参数
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/yolov5s.pt', help='model path(s)')
parser.add_argument('--source', type=str, d