【论文源码实战】YOLO+3D Bounding Box:实现对目标的3D框绘制

前言​

《3D Bounding Box Estimation Using Deep Learning and Geometry》展示了如何从单一视图中恢复已知对象类别的3D边界框。通过使用新颖的MultiBin损失进行方向预测和有效地选择边界框尺寸作为回归参数,该方法能够在没有额外的3D形状模型或复杂预处理管道的情况下估计稳定且准确的3D边界框。提出了未来的研究方向,包括将立体视觉和视频序列信息整合到方法中。

环境配置​

环境配置同YOLO系列的安装方式一致,这里不做介绍。​

代码测试​

模型下载​

python weights/get_weights.py

推理​

python inference.py 

参数​

parser = argparse.ArgumentParser()​
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/yolov5s.pt', help='model path(s)')​
parser.add_argument('--source', type=str, d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧锦程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值