体验 Shifu 解决报错流程

打开技术文档,首先看了一下目录,简单了解一下框架结构,目录的其中重点是“下载安装” 和 ”本机安装测试“,这两部分。

由于没有学过K8s的缘故,所以刚开始看命令都是一知半解,啃了半天的K8s快速入门,理解基础知识如Pod是什么。

Shifu安装方式

安装前提是:都需要安装Docker,文中是安装 Docker Desktop,我们是Linux安装Docker就行

从文档中总结得出,Shifu安装方式共分为三种:

  1. 下载准备好的Shifu安装包(Docker镜像压缩文件)并安装,Shifu会快捷方便的在Docker中运行
  2. 本机安装中:手动安装Shifu所需要的组件如 kubectl ,kind ,再安装 Shifu仓库 。   
    # clone Shifu仓库
    git clone https://github.com/Edgenesis/shifu.git
    cd shifu
    # 在集群中安装Shifu
    sudo kubectl apply -f pkg/k8s/crd/install/shifu_install.yml
     就是各种组件配置安装很麻烦,并且没有deviceshifu的pods资源,无法进行资源的交互,也就是无法使用shifu的API,使用数字孪生的命令(这也是卡了我许久的原因,一直以为是环境配置错误,所以一直回滚数据,但运行时还是提示无法连接本地主机,或无资源)
  3. 在生产环境部署 Shifu 前您需要先安装 Kubernetes

    Shifu 提供了一键安装的方式,您可以使用如下命令将 Shifu 安装到您的集群中:

    kubectl apply -f https://raw.githubusercontent.com/Edgenesis/shifu/v0.1.1/pkg/k8s/crd/install/shifu_install.yml
    
### 关于 AI-Shifu 项目的复现 AI-Shifu 并未被明确提及在所提供的参考资料中,因此需要基于已知的开源人工智能项目结构以及常见的人工智能框架来推测其可能的技术实现路径。以下是针对此类项目的通用复现方法: #### 1. **环境准备** 为了成功运行任何复杂的 AI 项目,首先需搭建合适的开发环境。通常情况下,Python 和 C++ 是主流编程语言之一。对于 Python 部分,可以利用 `simpleai` 工具包完成部分功能模块的设计[^1]。 ```bash pip install simpleai ``` C++ 方面,则可考虑使用机器学习库 MLPACK 来处理更底层的数据运算需求。 #### 2. **源码获取与分析** 假设目标项目托管于 GitHub 或其他代码共享平台,可以通过克隆仓库的方式下载完整的源码文件。例如,如果存在类似的公开资源链接(如引用中的 geekai),可以直接访问并研究其实现细节[^2]。 ```bash git clone https://github.com/example-repo/ai-shifu.git cd ai-shifu ``` 接着深入阅读 README 文档以及其他辅助说明材料,理解整体架构设计思路及其核心组件的功能定位。 #### 3. **依赖安装** 大多数现代 AI 应用都会依赖一系列第三方库支持特定操作。按照官方文档指示逐一解决这些外部依赖项至关重要。这一步骤往往涉及配置虚拟环境、调整编译参数等工作内容。 #### 4. **数据集准备** 许多训练模型都需要高质量标注过的样本作为输入素材。确认是否有配套提供或者自行收集整理适用范围内的数据集合,并将其转换成程序能够识别的标准格式。 #### 5. **调试优化** 最后,在本地环境中逐步执行各个阶段的任务逻辑验证正确性的同时不断改进性能表现指标直至达到预期效果为止。 ```python from simpleai.search import SearchProblem, astar GOAL = 'HELLO WORLD' class CustomSearchProblem(SearchProblem): def actions(self, state): if len(state) < len(GOAL): ... initial_state = '' problem = CustomSearchProblem(initial_state=initial_state) result = astar(problem) print(result.state) ``` 以上仅为理论指导框架仅供参考实际过程中还需依据具体情况灵活应对各种突发状况做出相应调整策略确保最终顺利完成整个过程.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值