自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 无线通信网络拓扑推理采样率实验(对比测试)

【代码】无线通信网络拓扑推理采样率实验(对比测试)

2025-06-11 09:34:15 25

原创 无线通信网络拓扑推理采样率实验(数据生成)

测试信号采样率对无线通信网络拓扑推理的效果(数据生成)

2025-06-11 09:22:30 282

原创 图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用

图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用。如果已经编写好了GCN的程序,改写GAT的程序是很方便的,torch_geometric.nn下既有一般图神经网络GCNConv包,也有图注意力神经网络GATConv包。

2025-06-10 15:20:16 62

原创 PyG测试GCN无线通信网络拓扑推理方法时间复杂度

PyG测试GCN无线通信网络拓扑推理方法时间复杂度

2025-06-09 22:39:33 310

原创 PyG遍历生成20节点到500节点的大规模无线通信网络拓扑推理数据

本文介绍了一个将MATLAB生成的无线通信网络拓扑数据(.mat格式)转换为PyTorch Geometric图数据格式的程序。程序通过自定义graph_data类继承InMemoryDataset,实现了数据加载、处理与保存功能。主要步骤包括:读取MATLAB文件中的信号数据(signals)和拓扑连接数据(tp_list),转换为PyTorch张量;生成正负样本边索引和标签;添加复杂度测试数据;最后保存为PyG可用的.pt文件。程序批量处理了20到500个节点规模的网络数据......

2025-06-09 10:35:49 871

原创 MATLAB遍历生成20到1000个节点的无线通信网络拓扑推理数据

MATLAB遍历生成20到1000个节点的无线通信网络拓扑推理数据,包括网络拓扑和每个节点发射的电磁信号,采样率1MHz/3000,信号时长5.7s,单帧数据波形为实采

2025-06-08 22:40:43 343

原创 MATLAB生成大规模无线通信网络拓扑(任意节点数量)

MATLAB生成任意节点数量的网络拓扑,符合现实世界节点空间分布和连接规律

2025-06-08 22:22:12 606

原创 PPT里如何互换两张图片的位置

PPT图片互换位置技巧:虽然PPT没有直接互换功能,但可通过组合、翻转实现。操作步骤:1)先将需要互换的图片组合;2)对组合进行水平或垂直翻转;3)取消组合后单独调整位置。这种方法简单有效,可快速实现图片位置对调。

2025-06-06 10:46:46 185

原创 MATLAB仿真生成无线通信网络拓扑推理数据集

本文介绍了一套用于生成不同规模无线网络拓扑数据集(20、30、40、50节点)的MATLAB程序。程序采用层次化生长模型构建网络拓扑:从中心节点开始,逐层向外扩展各层级节点,并通过最小距离原则建立连接。核心功能包括: 生成不同信噪比(SNR)的模拟信号数据 实现节点功率配置和随机响应 包含四种节点规模(20-50节点)的拓扑生成函数 支持添加环形连接增强网络连通性 输出包含拓扑矩阵、连接列表和节点信号的完整数据集 各拓扑生成函数采用统一的架构,通过调整层级节点数量实现不同规模网络的构建......

2025-06-03 21:31:33 329

原创 Torch Geometric GCN训练心得

本文探讨了直推式图卷积神经网络(GCN)训练中的参数量控制问题。作者发现当网络规模为30个节点时,原始大参数量模型(2000-500)难以收敛,而降低参数量至500-100后训练效果改善。实验表明,在直推式学习中,由于每次训练仅针对一个样本,过大的模型参数量会导致训练困难,这与VC维理论强调的模型复杂度与样本量匹配原则一致。有趣的是,作者还观察到随机置零10%节点特征反而有助于训练,暗示数据缺失可能带来正则化效果。这些发现为直推式GCN的参数设计提供了重要参考。

2025-06-02 19:22:11 370

原创 RuntimeError: Can‘t call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

摘要:文章讲述了解决报错问题的方法,建议在报错函数前添加装饰器,这样既解决了问题又便于追踪改动。虽然也可根据报错提示直接修改代码,但前者方法更直观便捷,能清晰呈现修改位置。经测试,添加装饰器后程序运行正常。该方法突出了代码修改的可视化和可维护性优势。

2025-06-01 17:31:37 188

原创 pycharm打印时不换行,方便对比观察

优化PyTorch打印设置:使用torch.set_printoptions(linewidth=200)可调整输出格式,使长数据更易阅读。该设置扩展示例显示宽度,适合调试时查看完整内容。

2025-06-01 11:03:59 370

原创 Torch Geometric环境下无线通信网络拓扑推理节点数据缺失实验

《基于GCN的无线通信网络拓扑推理与缺失数据实验研究》 摘要:本文提出了一种用于无线通信网络拓扑推理的图卷积神经网络方法,并重点研究了数据缺失情况下的性能表现。实验采用30节点网络模型,生成200组样本数据,通过在信号数据中随机设置不同比例(10%-90%)的缺失块来模拟数据残缺情况。方法包含两个核心模块:gcn_dataset_incomplete.py负责生成带有随机缺失的数据集,gcn_erase_test.py则用于评估模型性能。实验结果表明,该GCN模型在数据缺失情况下仍能保持较好的拓扑推理能力,

2025-05-31 10:47:45 153

原创 Pycharm import时提示“未解析的引用”

PyCharm中"未解析的引用"报错可以通过调整环境解决。删除同目录下的.idea文件夹后重新以项目形式打开.py文件,系统库的报错提示会消失。虽然自定义包可能仍会出现红色波浪线提示,但问题已大大减轻,pip安装的第三方库都不会再显示该报错。这个方法可以有效消除烦人的引用报错提示,改善开发体验。

2025-05-31 10:00:09 367

原创 Torch Geometric中Failed to initialize NumPy和‘numpy‘ has no attribute ‘typeDict‘的矛盾

摘要:文章分析了Python程序中常见的numpy版本兼容性问题及其解决方法。当出现"Failed to initialize NumPy"错误时,通常是由于numpy版本过低;而"'numpy' has no attribute 'typeDict'"则表明版本过高(1.20后改用np.sctypeDict)。作者建议优先通过版本调整解决兼容性问题,而非修改包内容。文章还展示了处理h5py、torch_geometric和numpy之间版本冲突的实际案例,包括将np

2025-05-30 22:39:33 829

原创 Pytorch Geometric官方例程pytorch_geometric/examples/link_pred.py环境安装教程及图数据集制作

摘要:本文澄清了图数据不能用CUDA加速的误区,指出图数据以张量形式存在,完全支持CUDA并行计算。作者分享了成功运行GCN模型的环境配置,包括关键包版本(torch 2.4.1、torch-geometric 2.3.1等)和CUDA 11.8的安装注意事项,强调需先装CUDA再装GPU版torch。同时提到解决numpy和pandas版本冲突的经验,并提供了CUDA版本切换的参考文章链接。(149字)

2025-05-30 15:34:14 1217

原创 python h5py 读取mat文件的<HDF5 object reference> 问题

摘要:Python中使用h5py加载MATLAB的.mat文件时,处理double类型数据可直接读取,但cell类型数据需要特殊处理。通过h5py.File加载文件后,对cell数组元素需使用数组索引方式(如mat_file[Tp_list[0,k]])提取具体内容,否则会得到不可直接使用的HDF5对象引用。这种方法解决了cell类型数据访问不便的问题,使得MATLAB复合数据类型能在Python中正常使用。

2025-05-29 21:43:40 296

原创 统计图中节点特征的余弦相似度、欧式距离

本文介绍了一个统计通信网络节点余弦相似度的程序。程序读取包含200个样本的.mat文件,分别计算有连接关系节点和无连接关系节点的余弦相似度,并将其保存到两个列表中。通过随机采样确保两类数据量相同后,将结果整理为DataFrame格式,包含大类(SNR值)、小类(关系标识)和相似度值三列,最后导出为Excel文件以便用Origin绘图。该程序实现了对网络拓扑节点关系的相似度统计分析,为后续可视化研究提供了数据支持。

2025-05-29 10:41:02 231

原创 PPT连同备注页(演讲者模式)一块转为PDF

本文介绍了两种将PPT备注导出为PDF的方法对比。第一种方法是选择"发布内容-备注页"选项并进行页面裁剪,可成功导出包含备注的PDF;第二种方法仅勾选"包含备注"选项则无法导出备注内容,效果与直接导出PDF相同。实验表明,必须选择"备注页"选项才能确保备注被正确导出。

2025-05-25 14:08:35 660

原创 YOLOv3,YOLOv7,YOLOv8,YOLOv10目标检测结果y,height误差和召回率便捷计算程序

用预测结果去匹配真值框,误差最小的那个认为是预测结果应该对应的真值框。当然,如果预测结果偏离非常大,可以加一个阈值,大于这个阈值,这个预测结果的误差就不去算了。YOLO的pytorch、tensorflow等可能有eval、test这些模块,但是我这个比较直接、简单明了,大家很容易看明白,二次开发。除了y,height误差和召回率,其他的x,weight,准确率、精度也是类似的,顶多改几句话就行。调用模型predict(detect)指定文件夹下面图片,同时,调数据集标签,计算出误差。

2025-05-23 21:20:12 299

原创 根据YOLO数据集标签计算检测框内目标面积占比(YOLO7-10都适用)

该程序用于计算时频图中信号面积与检测框面积的比值,并将结果保存为Excel文件,以便后续绘制论文实验图。程序首先定义了标签文件和图像文件的路径,并确保输出目录存在。通过读取标签文件,程序解析每个检测框的类别、中心坐标和尺寸,并将其转换为像素值。接着,程序从图像中提取检测框区域,进行二值化处理,并计算信号面积与检测框面积的比值。根据类别ID,程序将结果分别存储在不同的列表中。最后,程序将所有结果保存为Excel文件,并生成二值化图像以供进一步分析。该程序适用于多信号参数估计的实验数据处理,能够有效支持论文中的

2025-05-23 20:35:28 250

原创 玩转YOLOv10 多尺度多通道特征图

在YOLOv10的AutoBackend类的forward函数中,用户通过添加自定义代码实现了特征图的保存和可视化功能。具体包括三个部分:1)通过设置activate_state=1,可以保存特征图的激活情况,并计算不同通道的平均值;2)通过设置save_feature_map=1,可以保存多尺度(80x80、40x40、20x20)的特征图,并将其保存为图片文件;3)通过设置big_feature_map=1,可以将不同尺度的特征图拼接为一张长图,并保存为高分辨率图片。

2025-05-18 10:28:56 337

原创 怎么用Origin画出MATLAB效果的3D时频图

MATLAB画3D时频图的效果比Origin差远了....但用Origin去画MATLAB需要一些过程本帖让你轻轻松松把MATLAB的时频图搬移到Origin中,然后拥有高级视图的3D时频图,并且可以随心调整格式。

2025-05-17 10:12:08 528

原创 语句逻辑梳理

修改前的结构:场景修饰(在非合作场景中)+主(对信号进行参数估计)+谓(是)+宾(频谱管理的重要前提)修改后:主(对非合作场景中的信号进行参数估计)+谓(是)+宾(频谱管理的重要前提)在非合作场景中对信号进行参数估计是频谱管理的重要前提。对非合作场景中的信号进行参数估计是频谱管理的重要前提。

2025-05-16 15:29:55 78

原创 YOLOv7训练时4个类别只出2个类别

在使用YOLOv7进行训练和预测时,发现模型仅能预测出两个类别(LFM和SFM),而实际应有四个类别。经过检查,特征图大小和anchors设置均与YOLOv3一致,且YOLOv3表现正常。最终发现问题可能出在detect.py中的conf-thres参数设置过高,将其从0.5调整为0.1后,问题得到解决。此外,还需注意在NMS操作时不使用classes参数,并在train.py中根据实际类别数和图片大小调整hyp['cls']和hyp['obj']的缩放比例。这些调整有助于确保模型能够正确预测所有类别。

2025-05-16 14:49:58 1198

原创 YOLOv3模型直接预测的框(未做NMS)是怎么来的

get_anchors_and_decode()函数是YOLOv3模型中用于解码预测框的关键部分。该函数处理三个不同尺度的特征图(13x13、26x26、52x52),每个特征图的每个网格都对应一个预测框,包含中心坐标(x, y)和宽高(w, h)。函数通过预定义的9种锚框(anchors)来调整预测框的宽高,并输出调整后的框坐标、置信度和类别概率。具体步骤包括:1)生成网格坐标;2)将锚框扩展到每个网格;3)解码预测框的中心坐标和宽高,并进行归一化;4)计算预测框的置信度和类别概率。

2025-05-15 14:51:38 196

原创 Tensorflow 2.X Debug中的Tensor.numpy问题 @tf.function

在调试YOLOv3模型时,若想查看get_pred函数下get_anchors_and_decode函数中grid_shape的具体数值,直接打印grid_shape只能显示其Tensor属性,无法获取实际数值。使用grid_shape.numpy()会报错,因为get_pred函数通过@tf.function装饰器调用,该装饰器用于加速程序运行,但会限制对Tensor的直接操作。为了调试方便,可以去掉@tf.function装饰器,这样在调用get_anchors_and_decode函数时,便可以通过g

2025-05-15 11:33:18 360

原创 用python把YOLOv3的anchors画出来观察

该程序用于可视化YOLOv3模型中的锚框(anchors)。通过定义锚框的尺寸和颜色,程序在416x416的图像上绘制每个锚框,并将其保存为PNG格式的图像文件。锚框的尺寸分别为[10,13]、[16,30]、[33,23]、[30,61]、[62,45]、[59,119]、[116,90]、[156,198]、[373,326],并使用红、绿、蓝三种颜色进行区分。程序首先创建保存图像的文件夹,然后依次绘制每个锚框,并将其居中放置在图像中。最终,所有生成的图像保存在指定文件夹中,并输出保存路径的提示信息。

2025-05-15 10:15:37 222

原创 YOLOv3标签框检查python程序

本文介绍了一个用于检查YOLOv3标签文件(txt格式)是否正确的Python程序check_labels.py。该程序通过读取标签文件中的图像路径和边界框信息,将边界框绘制在对应的图像上,并保存带框的图像到指定目录。程序使用OpenCV库加载图像并绘制矩形框,确保标签转换后的准确性。通过这种方式,用户可以直观地检查YOLOv10标签转换为YOLOv3标签后的结果是否正确。程序还提供了示例路径,用户可以根据需要替换为自己的标签文件路径和输出目录。

2025-05-14 15:16:18 172

原创 YOLOv3, YOLOv7, YOLOv10的CUDA环境及便捷切换方法

YOLOv10、YOLOv7和YOLOv3的依赖环境有所不同。YOLOv10和YOLOv7基于PyTorch,推荐使用CUDA 11.7版本,而YOLOv3基于TensorFlow 2.2.0,需使用CUDA 10.1版本。切换CUDA版本时,需修改系统变量CUDA_PATH和PATH中的相关路径,并重启电脑以生效。此外,cuDNN的版本需与CUDA版本对应,可从NVIDIA官网下载。这些步骤确保了不同YOLO版本在GPU上的兼容性和性能优化。

2025-05-13 21:18:39 935

原创 YOLOv10的标签转YOLOv3的标签

该Python程序YOLOv10_label_to_YOLOv3_label.py用于将YOLOv10格式的标签文件转换为YOLOv3格式,并将所有转换后的标签整合到一个文件中。程序首先遍历指定文件夹下的所有txt文件,读取每个文件中的标签数据。YOLOv10的标签格式为类别 x_center y_center width height,其中坐标和尺寸是相对于图片宽高的比例。程序将这些比例转换为绝对坐标,并重新组织为YOLOv3的格式x_min y_min x_max y_max 类别......

2025-05-13 21:12:15 308

原创 Labelimg生成的xml标签与YOLOv10所需的txt标签互相转换

该程序用于将LabelImg生成的XML标签文件转换为YOLOv10所需的TXT格式标签。程序首先定义了类别名到数字的映射,然后指定输入和输出文件夹路径。通过遍历前100个XML文件,程序读取每个文件中的图像尺寸和对象边界框信息,并将其转换为YOLO格式的归一化中心点和宽高。转换后的数据被写入相应的TXT文件中。程序最终输出“转换完成!”的提示信息。该转换工具适用于需要将LabelImg标注数据用于YOLOv10模型训练的场景。

2025-05-12 11:21:34 231

原创 YOLOv3数据集/标签转换为YOLOv10数据集/标签的python程序

YOLOv3数据集/标签转换为YOLOv10数据集/标签的python程序

2025-04-29 20:03:25 174

原创 YOLOv10 train出现ImportError: numpy._core.multiarray failed to import的错误

YOLOv10 train出现ImportError: numpy._core.multiarray failed to import的错误

2025-04-29 16:17:43 222

原创 世界通信网络拓扑推理发展史

世界通信网络拓扑推理发展史(部分),个人整理用于学习。禁止商用,二次转载或公开场合使用请标明出处,违反必纠。不提供原图。

2024-12-17 11:06:00 199

原创 无线通信网络拓扑推理早期发展

个人整理的无线通信网络拓扑推理早期发展脉络,用于自己了解前人无线通信网络拓扑推理研究的数学原理;原创内容,二次转载请表明出处

2024-12-16 20:27:52 133

原创 Code Composer Studio(CCS)中CC1352R通信相关例程

Code Composer Studio(CCS)中CC1352R通信直接相关例程如下:单独的:rfCarrierWve,rfPackErrorRate 成对的:① rfDualModeRx / rfDualModeTx② rfEchoRx / rfEchoTx③ rfPacketRx / rfPacketTx

2024-07-26 14:20:25 308

原创 生活常用无线电频段分布瀑布图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G)

生活常用无线电频段分布瀑布图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G)

2024-06-07 11:59:47 792 1

原创 2024年6月6日~7日哈尔滨市南通大街145号民用、海事、FM、业余、航空及2.4G频段无线电瀑布图

2024年6月6日~7日哈尔滨市南通大街145号民用、海事、FM、业余、航空及2.4G频段无线电瀑布图

2024-06-07 11:04:35 467

原创 python+word一键修改“式中”未顶格,图&题居中但有缩进,公式有缩进等问题

python+word一键修改“式中”未顶格,图&题居中但有缩进,公式有缩进等问题

2024-05-28 20:28:44 415 1

哈尔滨工程大学A类期刊投稿情况统计(信通学科,截止至2024年)

自己调研了下A类期刊投稿情况,顺便整理成压缩包仅供参考

2024-12-12

生活常用无线电频段分布瀑布图的visio图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G)

生活常用无线电频段分布瀑布图的visio图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G) 瀑布图是自己在工位采集数据软件绘制的,标注是自己根据网上的信息整理的。如要转发使用请标明出处。允许二次创作

2024-06-07

dcs进行飞行模拟,tacview记录的航迹数据集,总共100条,包括直线、加速、水平转弯及爬升转弯

dcs进行飞行模拟,tacview记录的航迹数据集,总共100条,包括直线、加速、水平转弯及爬升转弯,包含.acmi格式,部分已转换为.csv格式,可用excel查看

2023-05-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除