核心程序:
# 手动估算 GCN FLOPs
E = gcn_data.edge_index.shape[1] # 边数
N = gcn_data.x.shape[1] # 节点数
F_in = Input_L # 输入特征维度
F_mid = middle_len # 第一层输出维度
F_out = out_len # 第二层输出维度
flops_layer1 = 2 * E * F_in + N * F_in * F_mid
flops_layer2 = 2 * E * F_mid + N * F_mid * F_out
total_flops = flops_layer1 + flops_layer2
第一项计算的是卷积操作的Flops,第二项计算的是映射的Flops
很好理解,卷积时只用边上的节点,所以是边E*特征长度,2代表乘法和加法;而映射的话是每个节点都要映射,于是是节点数N*特征长度*输出特征长度
模型结构:
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(Input_L, middle_len)
self.conv2 = GCNConv(middle_len, out_len)
def encode(self, x, edge_index):
c1_in = x.T
c1_out = self.conv1(c1_in, edge_index)
c1_relu = c1_out.relu()
c2_out = self.conv2(c1_relu, edge_index)
c2_relu = c2_out.relu()
return c2_relu
def decode(self, z, edge_label_index):
# 节点和边都是矩阵,不同的计算方法致使:节点->节点,节点->边
distance_squared = torch.sum((z[edge_label_index[0]] - z[edge_label_index[1]]) ** 2, dim=-1)
return distance_squared
完成程序,仅供参考:
#作者:zhouzhichao
#创建时间:25年5月30日
#内容:进行残缺数据实验
import warnings
from torch.nn import Threshold
warnings.simplefilter(action='ignore', category=FutureWarning)
import sys
import torch
import time
torch.set_printoptions(linewidth=200)
import pandas as pd
import numpy as np
from torch_geometric.data import Data
from torchinfo import summary
import matplotlib.pyplot as plt
from torch_geometric.nn import GCNConv
sys.path.append('D:\无线通信网络认知\论文1\大修意见\Reviewer1-1 阈值相似性图对比实验')
from gcn_dataset import graph_data
print(torch.__version__)
print(torch.cuda.is_available())
from sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_score
from ptflops import get_model_complexity_info
data_i = 1
root = "test data 30 (pyg)\graph data "+str(data_i)
accuracy = []
precision = []
recall_rate = []
cost_time = []
# middle_len = 200
# out_len = 100
# middle_len = 5
middle_len = 50
out_len = 20
# for middle_len in range(0, 50, 1):
Threshold = 0
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(Input_L, middle_len)
self.conv2 = GCNConv(middle_len, out_len)
def encode(self, x, edge_index):
c1_in = x.T
c1_out = self.conv1(c1_in, edge_index)
c1_relu = c1_out.relu()
c2_out = self.conv2(c1_relu, edge_index)
c2_relu = c2_out.relu()
return c2_relu
def decode(self, z, edge_label_index):
# 节点和边都是矩阵,不同的计算方法致使:节点->节点,节点->边
distance_squared = torch.sum((z[edge_label_index[0]] - z[edge_label_index[1]]) ** 2, dim=-1)
return distance_squared
def decode_all(self, z):
prob_adj = z @ z.t() # 得到所有边概率矩阵
return (prob_adj > 0).nonzero(as_tuple=False).t() # 返回概率大于0的边,以edge_index的形式
@torch.no_grad()
def get_val(self, gcn_data):
#获取未参与训练的节点索引
edge_index = gcn_data.edge_index # [2, 30]
edge_label_index = gcn_data.edge_label_index # [2, 60]
edge_label = gcn_data.edge_label
# 转置方便处理,变成 (num_edges, 2)
edge_index_t = edge_index.t() # [30, 2]
edge_label_index_t = edge_label_index.t() # [60, 2]
# 把边转成集合形式的字符串,方便查找(也可用tuple)
edge_index_set = set([tuple(e.tolist()) for e in edge_index_t])
# 判断edge_label_index中的每个边是否在edge_index_set里
is_in_edge_index = [tuple(e.tolist()) in edge_index_set for e in edge_label_index_t]
is_in_edge_index = torch.tensor(is_in_edge_index)
# 不相同的列(边)
val_col = edge_label_index[:, ~is_in_edge_index]
val_label = edge_label[~is_in_edge_index]
# val_col = val_col[:,:20]
# val_label = val_label[:20]
divide_index = int(sum(val_label).item())
val_col_1 = val_col[:,:divide_index]
val_label_1 = val_label[:divide_index]
val_col_0 = val_col[:, divide_index:2*divide_index]
val_label_0 = val_label[divide_index:2*divide_index]
return val_col_1, val_label_1, val_col_0, val_label_0
@torch.no_grad()
def predict(self, gcn_data, threshhold):
model.eval()
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, gcn_data.complex_test).view(-1)
out = 1 - out
out_np = out.cpu().numpy()
pred = (out_np > threshhold).astype(int)
return pred
# @torch.no_grad()
# def forward(self, gcn_data):
# model.eval()
#
# z = model.encode(gcn_data.x, gcn_data.edge_index)
# # out = model.decode(z, gcn_data.edge_label_index).view(-1)
# out = model.decode(z, gcn_data.complex_test).view(-1)
# out = 1 - out
#
# out_np = out.cpu().numpy()
# labels_np = gcn_data.edge_label.cpu().numpy()
#
# threshhold = 0
# accuracy_max = 0
# for th in np.arange(-2, 1.1, 0.1):
# pred_labels = (out_np > th).astype(int)
# accuracy = accuracy_score(labels_np, pred_labels)
# if accuracy > accuracy_max:
# accuracy_max = accuracy
# threshhold = th
#
# pred = (out_np > threshhold).astype(int)
# return pred
@torch.no_grad()
def forward(self, gcn_data):
model.eval()
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, gcn_data.complex_test).view(-1)
out = 1 - out
out_np = out.cpu().numpy()
pred = (out_np > Threshold).astype(int)
return pred
@torch.no_grad()
def test_val(self, gcn_data, threshhold):
model.eval()
# same_col, diff_col, same_label, diff_label = col_devide(gcn_data)
val_col_1, val_label_1, val_col_0, val_label_0 = self.get_val(gcn_data)
# 1
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, val_col_1).view(-1)
out = 1 - out
out_np = out.cpu().numpy()
labels_1 = val_label_1.cpu().numpy()
# roc_auc_s = roc_auc_score(labels_np, out_np)
pred_1 = (out_np > threshhold).astype(int)
accuracy_1 = accuracy_score(labels_1, pred_1)
precision_1 = precision_score(labels_1, pred_1, zero_division=1)
recall_1 = recall_score(labels_1, pred_1, zero_division=1)
# 0
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, val_col_0).view(-1)
out = 1 - out
out_np = out.cpu().numpy()
labels_0 = val_label_0.cpu().numpy()
# roc_auc_d = roc_auc_score(labels_np, out_np)
pred_0 = (out_np > threshhold).astype(int)
accuracy_0 = accuracy_score(labels_0, pred_0)
precision_0 = precision_score(labels_0, pred_0, zero_division=1)
recall_0 = recall_score(labels_0, pred_0, zero_division=1)
accuracy = (accuracy_1 + accuracy_0)/2
precision = (precision_1 + precision_0)/2
recall = (recall_1 + recall_0)/2
return accuracy, precision, recall
@torch.no_grad()
def calculate_threshhold(self, gcn_data):
model.eval()
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, gcn_data.edge_label_index).view(-1)
out = 1 - out
out_np = out.cpu().numpy()
labels_np = gcn_data.edge_label.cpu().numpy()
threshhold = 0
accuracy_max = 0
for th in np.arange(-2, 1.1, 0.1):
pred_labels = (out_np > th).astype(int)
accuracy = accuracy_score(labels_np, pred_labels)
if accuracy>accuracy_max:
accuracy_max = accuracy
threshhold = th
return threshhold
def graph_normalize(gcn_data):
for i in range(gcn_data.x.shape[1]):
gcn_data.x[:, i] = gcn_data.x[:,i]/torch.max(torch.abs(gcn_data.x[:,i]))
gcn_data = graph_data(root)
graph_normalize(gcn_data)
Input_L = gcn_data.x.shape[0]
model = Net()
optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)
criterion = torch.nn.BCEWithLogitsLoss()
model.train()
def train():
optimizer.zero_grad()
z = model.encode(gcn_data.x, gcn_data.edge_index)
out = model.decode(z, gcn_data.edge_label_index).view(-1)
out = 1 - out
loss = criterion(out, gcn_data.edge_label)
loss.backward()
optimizer.step()
return loss
min_loss = 99999
count = 0#早停
for epoch in range(100000):
loss = train()
if loss<min_loss:
min_loss = loss
count = 0
# print("out_len: ", out_len, " epoch: ", epoch, " loss: ",
# round(loss.item(), 4), " min_loss: ", round(min_loss.item(), 4))
print("middle_len: ", middle_len, " epoch: ", epoch, " loss: ",
round(loss.item(), 4), " min_loss: ", round(min_loss.item(), 4))
count = count + 1
if count>100:
break
t1 = time.time()
for p in range(100):
threshhold = model.calculate_threshhold(gcn_data)
pred = model.predict(gcn_data,threshhold)
t2 = time.time()
delta_t = (t2 - t1)/100
calculate_flops = 1
# if calculate_flops:
# # model.summary()
# # print("Total parameters:", model.count_params())
# total_params = sum(p.numel() for p in model.parameters())
# print("Total parameters:", total_params)
# trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print("Trainable parameters:", trainable_params)
# # 确保模型构建完成
# input_shape = (1, gcn_data.x.shape[1]) # batch size = 1
# # input_shape = x.shape[1]
# # input_shape = (1, x_val.shape[1]) # 例如 (batch_size=1, sequence_length=3600)
#
# macs, params = get_model_complexity_info(model, input_shape, as_strings=True,
# print_per_layer_stat=True, verbose=True)
#
# print(f"FLOPs: {macs}")
# print(f"Parameters: {params}")
if calculate_flops:
total_params = sum(p.numel() for p in model.parameters())
print("Total parameters:", total_params)
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Trainable parameters:", trainable_params)
threshhold = model.calculate_threshhold(gcn_data)
Threshold = threshhold
# dummy_data = Data(x=gcn_data.x, edge_index=gcn_data.edge_index)
# dummy_data.edge_label_index = gcn_data.edge_label_index # 如果 forward 需要
# dummy_data.complex_test = gcn_data.complex_test # 如果 forward 用到
#
# # 2. 展示结构
# summary(model, input_data=(dummy_data,))
# 手动估算 GCN FLOPs
E = gcn_data.edge_index.shape[1] # 边数
N = gcn_data.x.shape[1] # 节点数
F_in = Input_L # 输入特征维度
F_mid = middle_len # 第一层输出维度
F_out = out_len # 第二层输出维度
# GCNConv FLOPs: 2*E*F + N*F*F_out(见论文或相关资料)
flops_layer1 = 2 * E * F_in + N * F_in * F_mid
flops_layer2 = 2 * E * F_mid + N * F_mid * F_out
total_flops = flops_layer1 + flops_layer2
print(f"Estimated GCN FLOPs: {total_flops / 1e6:.2f} MFLOPs")
accuracy_value, precision_value, recall_value = model.test_val(gcn_data, threshhold)
accuracy.append(accuracy_value)
cost_time.append(delta_t)
data = {
'cost_time': cost_time,
'accuracy': accuracy
}
# 创建一个 DataFrame
df = pd.DataFrame(data)
#
# # 保存到 Excel 文件
file_path = 'D:\无线通信网络认知\论文1\大修意见\Reviewer2-7 多种深度学习方法对比实验\\gcn acc-time data '+str(data_i)+'.xlsx'
df.to_excel(file_path, index=False)