前言
中科院李蒙蒙团队在2020年在Remote Sensing of Environment期刊上面发表了一套建筑栅格数据集,数据集包括建筑密度,建筑高度以及建筑体积。一共有三个地区的数据,分别是中国,美国和欧洲,空间分辨率为1km,数据集的时间为2015年。
论文信息
利用随机森林模型绘制欧洲、美国和中国的城市三维建筑结构,即建筑足迹(建筑密度)、高度和体积。模型表现良好,在所有三个案例区域中,建筑足迹的R2值为0.90,建筑高度的R2值为0.81,建筑体积的R2值为0.88。计算流程如下:
在构建模型过程中使用了多源数据来进行回归预测。使用到的空间数据如下
虽然只提供了2015年的建筑数据,但是可以根据该论文的方法来计算别的年份的建筑数据,具体算法过程请阅读原文,
论文doi:https://doi.org/10.1016/j.rse.2020.111859
数据介绍
其中论文的源码以及数据都已经发布,下载下来有多个文件夹:
数据存放在OutputData_CombinedModel文件夹里面,数据命名规则为cn\en\us分别代表中国\欧洲\美国
d\h\c分别代表建筑密度\高度\体积,cv为变异系数,mn为平均值
若你需要全球建筑数据,他们也发布了一套数据,
论文doi为:https://doi.org/10.1016/j.jag.2022.103048
数据同样为2015年,1km的栅格数据,包括建筑密度,建筑高度和建筑体积,其中的footprint就是建筑密度。
数据获取方式
数据获取方式如下,口令为:bh001
也可以在他们团队发布的网站进行获取:https://cscproject.github.io
注意数据使用请按照他们的要求进行引用!
感谢大家花时间来阅读本文作者水平有限,有失误之处请大家斧正!