【数据分享】建筑数据分享

前言

中科院李蒙蒙团队在2020年在Remote Sensing of Environment期刊上面发表了一套建筑栅格数据集,数据集包括建筑密度,建筑高度以及建筑体积。一共有三个地区的数据,分别是中国,美国和欧洲,空间分辨率为1km,数据集的时间为2015年。

论文信息在这里插入图片描述

利用随机森林模型绘制欧洲、美国和中国的城市三维建筑结构,即建筑足迹(建筑密度)、高度和体积。模型表现良好,在所有三个案例区域中,建筑足迹的R2值为0.90,建筑高度的R2值为0.81,建筑体积的R2值为0.88。计算流程如下:

如下

在构建模型过程中使用了多源数据来进行回归预测。使用到的空间数据如下

在这里插入图片描述

虽然只提供了2015年的建筑数据,但是可以根据该论文的方法来计算别的年份的建筑数据,具体算法过程请阅读原文,
论文doi:https://doi.org/10.1016/j.rse.2020.111859

数据介绍

其中论文的源码以及数据都已经发布,下载下来有多个文件夹:
在这里插入图片描述

数据存放在OutputData_CombinedModel文件夹里面,数据命名规则为cn\en\us分别代表中国\欧洲\美国
在这里插入图片描述

d\h\c分别代表建筑密度\高度\体积,cv为变异系数,mn为平均值

若你需要全球建筑数据,他们也发布了一套数据,
论文doi为:https://doi.org/10.1016/j.jag.2022.103048
在这里插入图片描述

数据同样为2015年,1km的栅格数据,包括建筑密度,建筑高度和建筑体积,其中的footprint就是建筑密度。
在这里插入图片描述

数据获取方式

数据获取方式如下,口令为:bh001
在这里插入图片描述

也可以在他们团队发布的网站进行获取:https://cscproject.github.io

在这里插入图片描述

注意数据使用请按照他们的要求进行引用!

感谢大家花时间来阅读本文作者水平有限,有失误之处请大家斧正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS探险家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值