FPGA实现LeNet数字识别(二)单通道卷积网络模块实现

第一层卷积层实现

单通道卷积网络通常用于处理灰度图像或单通道特征数据。其核心操作是使用卷积核(Filter)在输入数据上进行滑动计算,提取局部特征。输入数据为单通道(如28×28的灰度图像),卷积核为5×5x6的矩阵。

代码讲解

module conv5x5_stream #(
    parameter DATA_W   = 16,       // Q8.8
    parameter IMG_W    = 28,       // 输入行宽
    parameter OC_NUM   = 6,        // 输出通道数
    parameter ACT_RELU = 1'b1,
    parameter W_FILE   = "conv1.weight.hex",
    parameter B_FILE   = "conv1.bias.hex"
)(
    input  wire                         clk,
    input  wire                         rst_n,

    input  wire  signed [DATA_W-1:0]    din,
    input  wire                         din_vld,

    input  wire [$clog2(OC_NUM)-1:0]    oc_sel,

    output reg   signed [DATA_W-1:0]    dout,
    output reg                          dout_vld
);

输入din_vld 驱动下,1 拍 1 像素(Q8.8 定点);
输出:一次只算 一个输出通道,由外部把 oc_sel 轮询 0-5。
—— 所以硬件规模≈“一个 5×5 Kernel”,与 OC 数无关,超省资源。

    // ==========================================================
    // 1. 参数 ROM
    // ==========================================================
    (* rom_style="block" *)
    reg signed [DATA_W-1:0] w_rom [0:25*OC_NUM-1];
    (* rom_style="block" *)
    reg signed [DATA_W-1:0] bias_rom [0:OC_NUM-1];

    initial begin
        $readmemh(W_FILE,  w_rom);
        $readmemh(B_FILE,  bias_rom);
    end
  •  (* rom_style="block" *) 提示综合器把这两个数组用 Block RAM 实现,而不是用 LUT。
  • $readmemh 在仿真 0 ns 或综合阶段把 ASCII-HEX 文件里的 16 bit 定点数写进这些 ROM;之后运行时只读不写。
  • 地址映射固定为 oc_sel*25 + k(权重)和 oc_sel(偏置),因此权重文件行序必须是 “输出通道 → 25 个核系数”。

核心思想代码

    // ===================
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ujs_probulic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值