传感器阵列波束优化设计学习笔记(一)

传感器阵列波束优化设计学习笔记(一)

1.1阵列信号处理应用范围

  阵列信号在雷达麦克风阵列无线通信声呐医学成像地质勘探射电天文学等多种领域有广泛应用。其中在麦克风阵列处理领域,通过波束形成,可以实现声源定位、定向拾音、语音增强等功能。

  • 声源定位:(扫描方向)通过改变延迟Δτi\Delta \tau_iΔτi和权重wiw_iwi,波束形成器可以扫描不同方向,计算每个方向的信号强.(峰值检测)信号强度最大的方向即为声源的方向。通过检测输出信号的峰值,可以确定声源的方位。
  • 定向拾音:波束形成利用麦克风阵列中不同麦克风接收信号的时间差(TDOA)相位差,通过信号处理技术增强目标方向的信号,同时抑制其他方向的干扰。其核心思想是:
    • 信号叠加:将目标方向的信号对齐并叠加,使其增强。
    • 干扰抑制:通过调整权重和延迟,使非目标方向的信号相互抵消。
  • 语音增强:定向拾音利用麦克风阵列的空间滤波特性,通过调整信号的延迟和权重,使目标方向的语音信号在叠加时增强,而其他方向的噪声和干扰被抑制。语音增强的关键步骤包括:
    • 目标信号对齐:通过延迟调整,使目标方向的语音信号在叠加时相位一致。
    • 噪声抑制:通过权重调整,使非目标方向的噪声信号相互抵消。

1.2研究历史与现状

1.2.1波束形成的功能

  • 形成基阵接受系统的方向性。

  • 进行空域滤波,抑制空间干扰与环境噪声,提高信噪比。

  • 定向拾音:估计信号到达方向,进行多目标分辨,为信号源定位创造条件。

1.2.2波束形成的处理过程

采用空间分布的传感器阵列采集场(声场、电磁场等)数据,然后对所采集的阵列数据进行线性加权组合处理得到一个标量波束输出,该处理器称为波束处理器。

1.2.3传感器的空域滤波器性能的影响因素

传感器的空域滤波器性能直接影响波束形成的效果,进而决定定向拾音和语音增强的质量。以下是影响空域滤波器性能的主要因素及其详细分析:

(1) 结构形状

传感器的结构形状决定了麦克风阵列的空间分布特性,直接影响波束形成的方向性和分辨率。

  • 线性阵列
    • 麦克风沿一条直线排列。
    • 优点:结构简单,易于实现。
    • 缺点:只能在单一平面内形成波束,方向性受限。
    • 适用场景:一维方向定位,如会议室中的长桌。
  • 圆形阵列
    • 麦克风沿圆周排列。
    • 优点:能够在水平面内实现360°全向波束形成。
    • 缺点:垂直方向的分辨率较低。
    • 适用场景:需要全向覆盖的场景,如智能音箱。
  • 平面阵列
    • 麦克风在二维平面上排列(如矩形或圆形)。
    • 优点:能够在水平和垂直方向同时形成波束,空间分辨率高。
    • 缺点:结构复杂,计算量大。
    • 适用场景:高精度定位,如声学相机或安防监控。
  • 三维阵列
    • 麦克风在三维空间中排列。
    • 优点:能够在三维空间内实现高精度定位。
    • 缺点:结构复杂,成本高。
    • 适用场景:复杂环境中的声源定位,如无人机或机器人。

(2) 阵元数目

阵元(麦克风)的数量直接影响空域滤波器的分辨率和性能。

  • 阵元数量与分辨率
    • 阵元数量越多,波束形成的主瓣越窄,旁瓣越低,方向性越好。
    • 例如,线性阵列的波束宽度与阵元数量成反比。
  • 阵元数量与计算复杂度
    • 阵元数量增加会显著提高计算复杂度,尤其是在实时处理场景中。
    • 需要在分辨率和计算资源之间进行权衡。
  • 阵元数量与抗干扰能力
    • 更多的阵元可以提高空域滤波器的自由度,从而更好地抑制多方向的干扰。
    • 例如,在复杂噪声环境中,更多的阵元可以更有效地分离目标信号和噪声。
  • 实际应用中的选择
    • 低成本设备(如智能音箱)可能使用较少的阵元(4-8个)。
    • 高精度设备(如声学相机)可能使用数十甚至上百个阵元。

(3) 处理算法

处理算法是空域滤波器的核心,直接影响波束形成的性能和适用场景。

  • 固定波束形成
    • 预先设定延迟和权重,使波束指向固定方向。
    • 优点:计算简单,实时性好。
    • 缺点:无法适应动态环境。
    • 适用场景:目标方向固定的场景,如会议室中的固定发言位置。
  • 自适应波束形成
    • 根据环境噪声和干扰动态调整权重。
    • 常用算法:最小方差无失真响应(MVDR)、线性约束最小方差(LCMV)。
    • 优点:能够适应复杂环境和移动声源。
    • 缺点:计算复杂度高,对硬件要求较高。
    • 适用场景:动态环境,如智能家居或车载语音助手。
  • 宽带波束形成
    • 针对宽带信号(如语音),设计频率无关的延迟和权重。
    • 常用方法:滤波器组或频域处理。
    • 优点:适用于宽带信号,语音增强效果更好。
    • 缺点:计算复杂度较高。
    • 适用场景:语音通信和语音识别。
  • 深度学习辅助波束形成
    • 使用神经网络优化波束形成权重或直接估计目标信号。
    • 优点:能够处理非线性问题,适应复杂环境。
    • 缺点:需要大量训练数据,计算资源要求高。
    • 适用场景:高精度语音增强和声源定位。

1.2.4波束形成器的分类

波束形成器根据不同的特性和设计目标可以分为多种类型。以下是两种常见的分类方式及其详细说明:

(1)按数据的频带宽度分类:
a. 窄带波束形成器

  • 定义:窄带波束形成器适用于处理频率范围较窄的信号,通常假设信号在频域内是单频或近似单频的。
  • 特点
    • 信号波长近似恒定,延迟可以通过简单的相位调整实现。
    • 计算复杂度较低,适合实时处理。
  • 实现方法
    • 通过相位延迟对齐目标方向的信号。
    • 使用复数权重对信号进行加权。
  • 应用场景
    • 无线通信中的天线阵列。
    • 雷达系统中的目标定位。
  • 局限性
    • 不适用于宽带信号(如语音信号),因为不同频率分量的波长差异会导致相位延迟不一致。

​ b. 宽带波束形成器

  • 定义:宽带波束形成器适用于处理频率范围较宽的信号,能够同时处理多个频率分量。
  • 特点
    • 信号波长变化较大,需要针对不同频率分量设计不同的延迟和权重。
    • 计算复杂度较高,但能够更好地适应实际应用中的宽带信号。
  • 实现方法
    • 使用滤波器组或频域处理方法,对不同频率分量分别处理。
    • 在时域中设计有限冲激响应(FIR)滤波器,实现频率无关的延迟。
  • 应用场景
    • 语音信号处理(如会议系统、语音助手)。
    • 声学成像和声源定位。
  • 优势
    • 能够处理复杂的宽带信号,适应实际应用需求。

(2)按加权值的选择分类:

波束形成器根据加权值的选择方式可以分为数据独立波束形成器统计最优波束形成器。这种分类方式主要基于权重计算的依据。

​ a. 数据独立波束形成器

  • 定义:数据独立波束形成器的权重是预先设定的,不依赖于输入信号的统计特性。
  • 特点
    • 权重计算简单,实时性好。
    • 对目标方向的信号进行固定增益,对其他方向的信号进行固定抑制。
  • 实现方法
    • 常用的方法包括延迟求和波束形成器(Delay-and-Sum Beamformer)与部分旁瓣控制波束形成器(如Chebyshev波束形成器等)。
    • 权重通常根据阵列几何结构和目标方向预先计算。
  • 应用场景
    • 目标方向固定的场景,如会议室中的固定发言位置。
    • 低复杂度要求的实时系统。
  • 局限性
    • 无法适应动态环境中的噪声和干扰。
    • 对非目标方向的抑制效果有限。

​ b. 统计最优波束形成器

定义:统计最优波束形成器的权重根据输入信号的统计特性动态调整,以优化特定性能指标。

特点

  • 权重计算复杂,但能够适应动态环境。
  • 对目标方向的信号进行最大增益,同时对噪声和干扰进行最大抑制。

实现方法

  • 常用的方法包括最小方差无失真响应(minimum variance distortionless response,MVDR)波束形成器线性约束最小方差(linearly constraind minimum variance,LCMV)波束形成器多旁瓣抵消器(multiple sidelobe canceller,MSC)最大信噪比波束形成器
  • 权重通过求解优化问题得到,通常需要估计信号的协方差矩阵。

应用场景

  • 复杂环境中的语音增强和声源定位。
  • 移动声源或动态噪声环境。

优势

  • 能够显著提高信噪比(SNR),适应复杂环境。

局限性

  • 计算复杂度高,对硬件要求较高。
  • 需要准确的信号统计特性估计,否则性能可能下降。
  • 阵列数据的统计性有时是未知的,甚至可能随时间发生变化,就需要采用自适应算法获得统计优化波束形成器的加权向量。当阵元数目很大时,为了减小计算量,就会采用部分自适应算法,而其代价是损失一部分的最优性能。

1.2.5波束形成期的性能指标

(1) 阵增益
  • 定义:阵增益(Array Gain)是指波束形成器输出信号的信噪比(SNR)与单个麦克风输入信号的信噪比之比。

  • 计算公式
    阵增益=输出SNR输出SNR \text{阵增益} = \frac{\text{输出SNR}}{\text{输出SNR}} 阵增益=输出SNR输出SNR

  • 意义

    • 阵增益反映了波束形成器对目标信号的增强能力以及对噪声的抑制能力。
    • 阵增益越高,波束形成器的性能越好。
  • 影响因素

    • 麦克风阵列的阵元数量:阵元数量越多,阵增益通常越高。
    • 噪声场的特性:在均匀噪声场中,阵增益通常较高。
  • 实例:Capon波束形成器(即MVDR波束形成器),在保证对感兴趣方位的信号无失真输出的条件下,使基阵输出功率最小,最大限度地提高输出信噪比,或者说最大限度提高阵增益。Capon波束形成器方法是建立在阵列对期望信号的响应精确已知的基础上,所以影响Capon波束形成器的因素有期望信号响应向量噪声协方差矩阵

  • 信号自销现象:当阵列对期望信号的假想响应与真实响应失配时,自适应波束形成器会把实际期望信号误作为干扰而形成零陷。


(2) 稳健性
  • 定义:稳健性(Robustness)是指波束形成器在非理想条件下(如阵元位置误差、信号模型失配等)仍能保持良好性能的能力。
  • 意义
    • 稳健性高的波束形成器能够适应实际应用中的各种不确定性,如麦克风制造误差、环境变化等。
  • 影响因素
    • 算法设计:自适应波束形成器(如MVDR)通常对模型误差敏感,需要通过正则化等方法提高稳健性。
    • 硬件质量:麦克风的精度和阵列的安装质量会影响稳健性。
  • 实例:常规波束形成对各通道数据通过简单的延迟求和达到空间滤波的效果,它具有最好的稳健性。
  • 与阵增益的关系:高增益与稳健性是一对矛盾。

(3) 旁瓣级
  • 定义:旁瓣级(Sidelobe Level)是指波束形成器方向图中旁瓣的最大增益与主瓣增益之比,通常以分贝(dB)表示。
  • 意义
    • 旁瓣级反映了波束形成器对非目标方向信号的抑制能力。
    • 旁瓣级越低,波束形成器对干扰信号的抑制效果越好。
  • 影响因素
    • 加权函数的选择:如使用切比雪夫加权可以降低旁瓣级。
    • 阵元数量和阵列几何结构。

(4) 主瓣宽度
  • 定义:主瓣宽度(Mainlobe Width)是指波束形成器方向图中主瓣的宽度,通常以半功率波束宽度(HPBW,即增益下降3 dB时的角度范围)表示。
  • 意义
    • 主瓣宽度反映了波束形成器的方向分辨率。
    • 主瓣宽度越窄,波束形成器的方向性越强。
  • 影响因素
    • 阵列孔径:阵列孔径越大,主瓣宽度通常越窄。
    • 信号频率:频率越高,主瓣宽度通常越窄。

(5) 主瓣响应
  • 定义:主瓣响应(Mainlobe Response)是指波束形成器在目标方向上的增益。
  • 意义
    • 主瓣响应反映了波束形成器对目标信号的增强能力。
    • 主瓣响应越高,目标信号的输出强度越大。
  • 影响因素
    • 加权函数的选择:如均匀加权通常能最大化主瓣响应。
    • 阵列几何结构和阵元数量。

(6) 频率响应
  • 定义:频率响应(Frequency Response)是指波束形成器在不同频率下的增益特性。
  • 意义
    • 频率响应反映了波束形成器对宽带信号的处理能力。
    • 平坦的频率响应意味着波束形成器能够均匀地增强目标信号的所有频率分量。
  • 影响因素
    • 宽带波束形成器的设计:如使用滤波器组或频域处理方法。
    • 阵列的几何结构和阵元间距。

1.2.6波束形成器的实现

(1) 时域实现

时域实现是波束形成器最直接和经典的方法,通过对麦克风阵列接收到的时域信号进行延迟和加权处理,实现目标信号的增强和干扰信号的抑制。

实现步骤
  1. 信号采集

    • 麦克风阵列中的每个麦克风接收时域信号 xi(t)x_i(t)xi(t),其中 iii 表示麦克风索引。
  2. 延迟计算

    • 根据目标方向 θθ 和麦克风阵列的几何结构,计算每个麦克风的传播延迟 τi(θ)τ_i(θ)τi(θ)
    • 对每个麦克风的信号进行时间延迟 ΔτiΔτ_iΔτi,使得目标方向的信号在叠加时对齐。
  3. 信号加权

    • 对延迟后的信号应用权重wiw_iwi,以优化目标方向的信号增益并抑制干扰。

    • 加权后的信号为:
      yi(t)=wi⋅xi(t−Δτi) y_i(t)=w_i⋅x_i(t−Δτ_i) yi(t)=wixi(tΔτi)

  4. 信号叠加

    • 将所有麦克风的加权信号叠加,得到波束输出:
      y(t)=∑i=1Nyi(t) y(t)=\sum_{i=1}^{N}y_i(t) y(t)=i=1Nyi(t)
      其中 NN 是麦克风数量。
  5. 后处理

    • 对波束输出信号进行进一步处理,如降噪、回声消除等。
优点
  • 直观简单:时域实现直接操作时域信号,易于理解和实现。
  • 实时性好:适合低延迟的实时处理场景。
缺点
  • 计算复杂度高:尤其是对于宽带信号,需要对每个频率分量分别计算延迟。
  • 对硬件要求高:需要高精度的时钟同步和信号采样。
应用场景
  • 实时语音增强(如会议系统)。
  • 低复杂度要求的声源定位。

(2) 频域实现

频域实现通过对信号进行频域变换(如快速傅里叶变换,FFT),在频域中完成波束形成操作。这种方法特别适合处理宽带信号。

实现步骤
  1. 信号采集与分帧

    • 对每个麦克风的时域信号 xi(t)x_i(t)xi(t) 进行分帧处理,通常使用重叠窗口(如汉宁窗)。
  2. 频域变换

    • 对每帧信号进行快速傅里叶变换(FFT),得到频域表示 Xi(f)X_i(f)Xi(f),其中 f 表示频率。
  3. 延迟计算与相位调整

    • 在频域中,延迟操作可以通过相位调整实现。

    • 对每个频率分量 fff,计算目标方向 θθ 的相位延迟 ϕi(f,θ)ϕ_i(f,θ)ϕi(f,θ)
      ϕi(f,θ)=e−j2πfτi(θ) ϕ_i(f,θ)=e^{−j2πfτ_i(θ)} ϕi(f,θ)=ej2πfτi(θ)

​ 其中τi(θ)τ_i(θ)τi(θ)是时域延迟。

  1. 信号加权

    • 对每个频率分量应用权重 Wi(f)W_i(f)Wi(f),以优化目标方向的信号增益并抑制干扰。

    • 加权后的信号为:Yi(f)=Wi(f)⋅Xi(f)⋅ϕi(f,θ)Y_i(f)=W_i(f)⋅X_i(f)⋅ϕ_i(f,θ)Yi(f)=Wi(f)Xi(f)ϕi(f,θ)

  2. 信号叠加

    • 将所有麦克风的加权频域信号叠加,得到波束输出的频域表示:Y(f)=∑i=1nYi(f)Y(f)=\sum_{i=1}^{n}Y_i(f)Y(f)=i=1nYi(f)
  3. 逆变换

    • 对叠加后的频域信号进行逆快速傅里叶变换(IFFT),得到时域波束输出 y(t)y(t)。
  4. 后处理

    • 对时域输出信号进行进一步处理,如降噪、回声消除等。
优点
  • 适合宽带信号:频域实现能够同时处理多个频率分量,适合宽带信号(如语音)。
  • 计算效率高:通过FFT和IFFT,可以显著降低计算复杂度。
  • 灵活性高:可以在频域中针对不同频率分量设计不同的权重和延迟。
缺点
  • 帧处理引入延迟:分帧和重叠处理会引入一定的延迟,可能影响实时性。
  • 频谱泄漏:分帧操作可能导致频谱泄漏,需要通过加窗等方法缓解。
应用场景
  • 宽带语音增强(如语音助手、助听器)。
  • 高精度声源定位(如声学相机)。

1.2.7目标方位估计

瑞利准则:对于位于基阵远场的两个点源,仅当它们的夹角大于基阵孔径倒数的时候,它们才能被分辨。

参考资料

[1]鄢社锋,马远良.传感器阵列波束优化设计及应用[M].科学出版社,2009.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值