
超分辨率
文章平均质量分 94
小白难
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution(翻译)
Upscale-A-Video,这是一个文本引导的视频放大潜在扩散框架。该框架通过两个关键机制确保时间一致性:在本地,它将时间层集成到 U-Net 和 VAE-Decoder 中,保持短序列之间的一致性;全局,在没有训练的情况下,引入流引导的循环潜在传播模块,通过在整个序列中传播和融合潜在来增强整体视频稳定性。原创 2024-12-01 13:26:36 · 930 阅读 · 0 评论 -
学习视频超分辨率扩散模型中的空间适应和时间相干性(原文翻译)
SanteCo 专注于从低分辨率视频中学习时空指导,以校准潜在空间高分辨率视频去噪和像素空间视频重建。从技术上讲,SATeCo 冻结了预训练的 UNet 和 VAE 的所有参数,并且在 UNet 和 VAE 的解码器中只优化了两个有意设计的空间特征适应 (SFA) 和时间特征对齐 (TFA) 模块。原创 2024-11-30 16:24:54 · 1539 阅读 · 0 评论 -
CodeFormer——基于代码本查找变换器的鲁棒盲人脸修复翻译
CodeFormer,用于建模低质量人脸的全局组成和上下文,以便进行代码预测,从而发现即使在输入严重降质的情况下也能与目标人脸紧密接近的自然人脸。为了增强对不同降质情况的适应性,我们还提出了一个可控特征转换模块,允许在真实感和质量之间灵活权衡。得益于表现力强的代码本先验和全局建模,CodeFormer 在质量和真实感方面均优于当前最先进的技术,并表现出对降质的优越鲁棒性。原创 2024-10-30 18:00:53 · 1085 阅读 · 0 评论 -
GFPGAN论文——Towards Real-World Blind Face Restoration with Generative Facial Prior
GFPGAN论文——Towards Real-World Blind Face Restoration with Generative Facial Prior原创 2024-08-27 18:01:57 · 1436 阅读 · 0 评论 -
基于生成对抗模型GAN蒸馏的方法FAKD及其在EdgesSRGAN中的应用
基于生成对抗模型GAN蒸馏的方法FAKD及其在EdgesSRGAN中的应用原创 2024-08-26 17:46:25 · 1722 阅读 · 0 评论