自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(110)
  • 收藏
  • 关注

原创 金融数据---ETF日线行情数据

本教程将详细介绍如何使用 Python 的 AkShare 库获取 ETF 基金的历史数据。我们将使用函数从东方财富网获取数据。

2025-09-12 14:03:26 343

原创 金融数据---股票筹码数据

股票筹码,顾名思义,就是把股票比喻成赌场里的筹码。股票:代表一家上市公司的所有权凭证。筹码:代表投资者用于交易的“货币”或“棋子”。因此,股票筹码指的是投资者持有的股票数量及其对应的成本价格分布情况。它反映的是在不同价格点上,有多少数量的股票被买入持有。股票筹码是一个将市场数据(价格和成交量)人格化的分析工具。它试图揭示市场所有参与者的平均持仓成本读懂市场心理:找到大多数人赚钱或亏钱的价格区域。预判价格走势:识别潜在的支撑位和阻力位。洞察资金意图:判断是否有大资金在暗中布局(收集或派发)。

2025-09-12 11:29:06 655

原创 金融数据---获取股票日线数据

以下代码使用 Akshare 库获取中国 A 股市场的历史日线数据,并以 DataFrame 格式输出结果。# 定义股票代码和时间范围symbol = 'sh000001' # 上证指数代码start_date = '20240101' # 开始日期:2024年1月1日end_date = '20500101' # 结束日期:2050年1月1日(实际获取到最新可用数据)# 获取股票历史数据# 打印数据框print(df)参数详细说明。

2025-09-12 11:00:27 562

原创 金融数据库--3Baostock

Baostock 是一个极其优秀、专注于A股历史低频数据的免费解决方案。它以其简单、可靠、免费的特性,成为了无数个人量化交易者和研究人员入门和研究的“第一块基石”。免费获取A股漫长的历史日线数据进行中长期策略回测学习Python量化分析那么,Baostock 几乎是你的不二之选。但如果你的需求扩展到高频、实时或全球市场,则需要考虑 Tushare、AkShare 或付费的专业数据终端。

2025-09-10 15:09:14 2091

原创 金融数据库---2tushare

Tushare是一个免费、开源的Python财经数据接口包。它主要目标是帮助那些没有雄厚资金购买昂贵商业数据库(如Wind、Choice)的研究人员、个人投资者和量化爱好者,能够轻松地获取中国市场的股票、基金、期货、期权等金融数据。其核心理念是“让数据获取更简单”,通过封装复杂的API调用和数据处理过程,为用户提供简洁易用的Python函数来获取规整的Pandas DataFrame格式的数据。重要提示: Tushare的数据并非由其自身生产,而是通过聚合多家公开数据源(如交易所、财经网站等)而成。Tush

2025-09-10 14:44:23 843

原创 金融数据库---1akshare

AKShare 是 Python 金融数据获取领域的一个“宝藏”库。它虽然不是万能的,也存在一些稳定性上的挑战,但其免费、开源、全面的特性使其成为个人学习者、研究员和量化爱好者不可或缺的强大工具。对于初学者,它是进入金融数据分析世界的最佳敲门砖之一;对于资深玩家,它是一个极好的补充和备用数据源。在使用时,理解其工作原理并注意其局限性,就能最大限度地发挥它的价值。发布于 2025-09-10 14:24・贵州。

2025-09-10 14:26:14 1571

原创 量化研究--推出强大西蒙斯金融量化交易数据库2

目前金融数据很伤脑筋,以前东方财富给免费的获取,现在有限制了不方便模型分析,tushare需要付费,所以打算自己建立自己的数据库,把数据存储到服务器,方便回测,分析模型,我用了异步开发,速度是非常块的,西蒙斯金融量化交易数据库2做了重大的变化,数据全部入数据库,直接api去调用数据的接口数据,给了数据api,同时我对接了qmt,保留了实时数据的接口,实时数据不入数据库,直接获取就可以。安装成功了复制网页的代码运行就可以,前提的数据我还在上线。目前写的数据api,还在上线其他的。原创 L1511732。

2025-09-10 14:07:31 802

原创 金融量化指标--6InformationRatio信息比率

信息比率(IR)是量化金融领域一个强大而精细的工具,它超越了简单的“跑赢大盘”的概念,通过引入跟踪误差这一风险度量,深刻地揭示了超额收益的质量和稳定性。计算示例: 假设一位基金经理过去12个月的月度超额收益(每月跑赢基准的幅度)如下: [0.5%, 1.2%, -0.3%, 0.8%, 0.9%, -0.5%, 1.5%, 0.7%, 0.3%, 1.1%, -0.2%, 0.6%]两个基金经理可能有相同的超额收益,但IR高的那个,说明其收益来源更稳定,重复性更强,更可能是源于技能而非运气。

2025-09-09 14:36:22 823

原创 金融量化指标--5Sortino索提诺比率

索提诺比率通过聚焦下行偏差, refine(优化)了风险调整后收益的衡量方法,为投资者提供了一个更敏锐的工具来识别那些“涨得多、跌得少”的优秀策略。核心定义: 索提诺比率衡量的是每承受一单位下行风险(Downside Risk),所能获得的超额回报(超过最低可接受回报的部分)。DR(Downside Deviation): 下行偏差,这是索提诺比率的核心,也是它与夏普比率(使用总标准差)的关键区别。数值越高越好: 较高的索提诺比率意味着在承担相同单位的下行风险时,该策略能获得更高的超额回报。

2025-09-09 14:24:46 1039

原创 金融量化指标--4Sharpe夏普比率

标准差σp衡量的是总波动,既包括下跌风险(投资者厌恶的),也包括上涨波动(投资者喜欢的)。进阶思考: 在实际的量化交易中,我们追求的从来不是“最高的收益”,而是“最高的夏普比率”。因为高夏普比率的策略通常意味着更稳定、回撤更小、资金曲线更平滑,从而允许使用更高的杠杆(在风险可控的前提下)来放大收益,最终实现更高的绝对收益。一个持续拥有高夏普比率的基金,说明其经理人具有卓越的风险管理能力和稳定的盈利能力。衡量一项投资(或投资组合)在承受每单位风险的情况下,所能获得的超过无风险利率的额外报酬率。

2025-09-09 13:58:39 1302

原创 金融量化指标--3Beta 贝塔

聪明的投资者会将贝塔作为一个重要的参考指标,但同时必须意识到其基于历史数据的局限性,并结合其他指标(如Alpha、标准差、夏普比率)以及对公司基本面的定性分析,才能做出更全面、更明智的投资决策。如果一个基金获得了15%的回报,但它的贝塔是1.5,那么它承担了更高的风险,其经过风险调整后的收益(如夏普比率)可能并不出色。依赖历史数据:贝塔是用过去的数据计算的,但投资是面向未来的。一个上下波动都很剧烈的股票和一个只在大盘跌时剧烈下跌、大盘涨时却涨得不多的股票,可能拥有相同的贝塔值,但显然后者的风险体验更差。

2025-09-08 16:58:48 995

原创 金融量化指标--2Alpha 阿尔法

两只收益相同的基金,Alpha更高的那只意味着基金经理在更低的风险(或同样的风险下创造了更多收益)下取得了同样的成绩,显然更具吸引力。衡量投资技能的核心指标: Alpha剥离了市场波动(Beta)带来的影响,直接拷问基金经理的真实选股和择时能力。数据挖掘陷阱: 在量化领域,过度回测和优化(过拟合)可能会在历史数据上产生漂亮的Alpha,但这个Alpha在未来无法重现(“在样本内表现完美,在样本外表现糟糕”)。这部分收益是“主动”的,源于投资者的技能(如选股、择时、套利等),而非市场整体的恩赐。

2025-09-08 13:56:34 1285

原创 金融量化指标--策略年化收益

定义:年化收益率是把策略在特定时间段内的总收益(无论策略运行了1个月还是5年),换算成相当于投资期限为一年的标准化收益率。其目的是为了消除投资期限不同带来的比较障碍,使不同策略之间的收益表现具有可比性。核心计算方法总收益率法(简单情况)如果策略运行了T年(T可以是小数,如0.5年代表6个月),总收益率为R_total。年化收益率 = (1 + R_total)^(1/T) - 1例子:策略运行3年,总收益为50%(即年化收益率 = (1 + 0.5)^(1/3) - 1 ≈ 14.47%

2025-09-08 09:33:33 311

原创 量化研究--西蒙斯ptrade自动新股新债申购

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途。西蒙斯ptrade自动新股新债申购,自动读取数据每一天新股新债申购,这个函数是pt自带的,pt可以24小时运行非常的方便挂在服务器就可以。pt的设置,把这个代码复制到pt新建立一个策略就可以,比如西蒙斯申购。我默认的设置14:50进行,打新的收益还是非常不错的。量化研究--西蒙斯ptrade自动新股新债申购。导入实盘,点击量化里面的交易就可以。

2025-09-01 09:26:35 262

原创 量化研究--开放ptrade西蒙斯全天候ETF策略动量策略

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途ptrade运行在证券公司的服务器,稳定性好,不需要怎么样维护就可以24小时运行,群友需要一个ptrade的实盘交易模板,我把聚宽的动量策略改到了ptrade给大家参考实盘写,今天的行情可以我挂的ptrade策略测试还可以的,我在迁移小市值,指数增强策略到ptrade实盘交易的挂的策略数据pt非常的稳定策略的原理。

2025-08-29 14:21:23 1404

原创 量化研究---ptrade西蒙斯全天候动量模型

西蒙斯全天候动量模型2”是一个基于动量效应的ETF轮动策略,旨在通过量化指标从多个资产类别中选取趋势最强、最稳定的ETF进行投资。策略的核心思想是结合年化收益率和趋势稳定性(R平方)来评估ETF的动量质量,从而实现资产配置的优化。该策略每天调仓,确保及时捕捉动量变化,适用于全天候投资环境。“西蒙斯全天候动量模型2”是一个简单但有效的动量轮动策略,通过综合评估收益和趋势稳定性来选择ETF。它适合趋势明显的市场环境,能在资产类别间灵活切换,追求超额收益。

2025-08-29 14:14:21 941

原创 量化研究--西蒙斯全市场可转债势增强实盘策略5

这个策略是一个典型的趋势跟踪策略,其核心思想是:“强者恒强,追随趋势,在趋势启动时介入,在趋势衰竭时退出选券:聚焦于可转债市场。择时进场:当一只可转债同时出现强趋势(均线多排)、强动量(短期上涨明显)、多个独家看涨模型共振(六脉神剑、小果波段)时,认定为高质量的买入点。离场:当趋势、动量或看涨模型中任何一个方面出现走弱迹象时,就果断卖出,锁定利润或截断亏损。优点逻辑清晰,规则完全量化,避免了情绪干扰。使用了多因子综合判断,避免了单一指标的缺陷,信号质量理论上更高。

2025-08-22 09:13:08 994

原创 量化研究---年化25%西蒙斯全市场可转债趋势增强策略4.0回测

策略我全部上传了,可以结合自己的选股改源代码,后面我会对接选股模块,先自定义选股因子,在做趋势增强交易,这样会比较安全,剔除有问题的可转债,可以参考可转债5因子的自定义算法框架。文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途。:均线代表不同时间周期的市场平均成本,短周期均线反映短期趋势,长周期均线反映长期趋势。可转债,在趋势确立时买入,在趋势转弱或反转时卖出,以增强收益并控制回撤。

2025-08-13 15:49:51 684

原创 PTrade详细介绍

—恒生电子旗下专业级自动化交易工具。

2025-08-07 16:58:01 2012

原创 量化研究---年华30%西蒙斯中证A500趋势增强实盘策略4.0

该策略名为"西蒙斯中证A500指数趋势增强策略",主要特点包括:使用多因子筛选股票结合趋势跟踪和波段交易限制持股数量(最多10只)每只股票固定金额交易(买入约1万元,卖出约2万元)

2025-08-07 10:17:59 889

原创 量化研究---全球大类资产六脉神剑趋势增强策略回测

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途今天在外面旅游,群里朋友反馈参考盈亏计算有问题我检查了全部的修改了虽然这个参数没有使用到,我也改了,这里利用全球大类资产六脉神剑趋势增强策略当作例子来回测,熟悉回测框架,方便自己开发回测自己的策略开发这个回测系统是为了解决大类回测的回测问题,我回测2000指数增强策略,大qmt带不动,100多万的数据,利用我开发的回测很快就可以回测好,解决大数据回测的问题。

2025-08-06 17:09:16 789

原创 优化研究---年化21%全球大类资产波段趋势增强策略2.0

该策略属于多资产波段交易策略,主要特点包括:交易标的为全球主要资产类别的ETF(股票、债券、黄金等)使用波段交易信号进行买卖决策有限制的持仓管理(最多持有10只ETF)固定金额交易模式(每次买入约1万元,卖出约2万元)

2025-08-06 17:04:12 1089

原创 量化研究---推出强大西蒙斯可转债自定义因子交易系统2.0

网页http://14.103.193.242:8888/simmons_convertible_bond_trading_system.html,我后面会利用随机算法,遗传算法,机器学习,去自动组合挖掘因子,全部上线服务器自动模拟交易。一个星期的迁移,终于完成了西蒙斯可转债自定义因子交易系统2.0,换了新的服务器,提供实时数据支持,提供3个因子表,可以自己选择数据交易,支持强大的自定义因子交易,优化了交易算法,撤单,补单等。明天就可以自动交易了,qmt默认的策略是网页的3低策略,可以看持股。

2025-07-16 14:08:39 458

原创 量化研究--西蒙斯可转债量化实时数据交易系统数据api

我把可转债数据服务器数据api给大家方便调用,我在参考股票实时仿真交易系统开发可转债多策略检验系统,方便组合不同策略,大qmt我测试完成了。股票的仿真系统稳定运行,miniqmt实盘系统我也开发完成了。我在开发的可转债仿真交易系统,底层的交易框架全部自己建立。量化研究--西蒙斯可转债量化实时数据交易系统数据api。可转债的仿真交易系统还在开发,自动组合多因子。源代码我全部上传了可以下载使用。可转债数据api源代码。

2025-07-16 13:58:07 269

原创 ptrade量化教程3---策略引擎简介研究

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途前面给了读取账户的代码量化研究---ptrade第一个课,读取账户数据qmt方面我也比较熟悉,最近在看ptrade感觉比qmt简单太多了。qmt一个大qmt,一个miniqmt。写起来比较复杂,qmt,ptrade各有所长,给群友写量化教程,把全部qmt迁移到ptrade,方便大家研究使用,重点提示一下ptrade的实盘是不支持回测的,需要利用模拟盘。

2025-07-07 09:56:46 1037

原创 ptrade量化教程2---策略运行周期例子

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途前面给了读取账户的代码量化研究---ptrade第一个课,读取账户数据qmt方面我也比较熟悉,最近在看ptrade感觉比qmt简单太多了。qmt一个大qmt,一个miniqmt。写起来比较复杂,qmt,ptrade各有所长,给群友写量化教程,把全部qmt迁移到ptrade,方便大家研究使用,重点提示一下ptrade的实盘是不支持回测的,需要利用模拟盘。

2025-07-07 09:45:15 909

原创 量化研究---ptrade第一个课,读取账户数据

PTrade 是一款专业的量化交易平台,主要面向机构投资者和专业量化交易团队。

2025-07-07 09:30:51 667

原创 qmt量化研究--1qmt介绍

最近我打算写一套qmt的量化教程,目前主要的实盘交易框架是qmt,ptrade,qmt支持本地,服务器运行是比较开放的系统,ptrade在服务器运行,比较封闭的系统,各有所长,qmt,分为miniqmt,和大qmt,miniqmt是本地的api,通过客户端转发到证券公司,大qmt只能在证券公司的客户端运行图为 QMT 系统 Python 模型运行流程图。当用户在 Python 平台编写好自己的策略后,可以点击【运行】按钮来运行脚本。

2025-06-18 14:50:24 598

原创 聚宽交易系统4.0---涨停板一进二板三合一策略设置

大家在使用聚宽交易系统4.0会遇到集合竞价下单的问题,我用涨停板策略为例子,教大家怎么样设置,我利用算法处理了集合竞价撤单问题,很多人在使用这个模型,反馈还是非常不错的,最近在运行的小市值3.0不错。文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途。策略源代码我和qmt我全部上传了知识星球可以下载使用,这个只是例子参考,怎么样在集合竞价下单交易设置,策略设置,聚宽设置,设置策略授权码,可以找我要就可以。

2025-06-18 13:50:45 568

原创 聚宽交易系统4.0---年华70%大小外择时小市值3.0策略设置

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途最近把大家反馈的问题修改完成了西蒙斯聚宽交易成交系统高速服务器4,大qmt的没有什么问题可以放心使用,修改了实盘半年下来遇到的全部问题使用的教程在修改miniqmt版本这几天上线这里我利用策略为例子给大家测试怎么样交易策略的原理。

2025-06-18 13:47:48 931

原创 量化研究---bigquant策略交易api研究

点击复制私钥 比如RnnA00dqd13r6Nl0e696LWOFG3DYLxwSql6RKpJDecosstyuW87EoWr26K7ma5tx。api接口来平台的代码整理,原理是读取bigquant的模拟测试信号,下单,可以完美的对接qmt交易,我优化了交易api的部分内容。上面部分就是策略id 4eeee2eb-fc9b-4b25-8442-d99c70d9ce5f。交易api对接的源代码,我改进了不少内容。里面有3个参数,公钥,私钥,策略id。获取策略id 点击策略模拟,我的策略。

2025-05-23 23:10:02 1044

原创 量化研究---推出强大西蒙斯量化交易回测系统2.0

工欲善其事必先利其器,有一个强大的回测框架检验策略还是很必要,我目前利用qmt,ptrade回测,感觉还是有很大的不足,我就开发了自己的回测系统详细的系统介绍量化研究---推出强大西蒙斯量化交易回测系统2.0底层的源代码不亚于我开发的实盘交易系统同时我把qmt实盘也兼容过来了支持实盘交易看一下目前免费的回测框架Python 的策略回测框架种类繁多,适用于不同场景和需求。

2025-05-23 09:52:55 1236

原创 量化研究--ATR高频量化网格策略实盘研究

ATR(Average True Range,平均真实波幅)自动生成网格是一种基于市场波动性动态调整交易网格的策略,结合了ATR指标对波动性的衡量和网格交易的机械化操作。我感觉测试了一下ATR比较合适日线网格,所以我在开发日线网格模型,用来做红利ETF,黄金,债券,银行等标的,很合适做网格,波动率稳定。今天完成了高频量化网格策略,给了2格模型,固定百分比和自动ATR生成自动网格2格算法。看一下ATR的原理,计算公式,感觉很多是密密麻麻的原理,感觉回到了大学金融工程的课程。

2025-05-21 16:02:33 1418

原创 量化研究---qmt股票多周期合成转化代码

在策略交易中经常需要跨多周期调用数据,但是给的接口没有这个数据,需要我们小周期数据合成大周期数据,比如tick转1分钟,qmt的数据也是tick合成的,比如1分钟合成60,65,90等周期数据,这里我们需要利用pandas的合成函数原始文章量化研究---qmt股票多周期合成转化代码https://mp.weixin.qq.com/s/wSiHUb-DYbJanoAloyUhtg 是 Pandas 中用于时间序列重采样的强大工具,它可以将时间序列从一个频率转换到另一个频率(如将每日数据转换为每月数据)。本教程

2025-05-21 15:51:33 768

原创 量化研究---年化100国九条后中小板微盘小改策略实盘

聚宽设置可以参考教程 https://gitee.com/li-xingguo11111/joinquant_trader_bigqmt。qmt聚宽成交系统2.0上线,实盘的效果可以,基本不存在漏单,不成交,重新会自动检查,补单,撤单了在下单等模块实时分析,教程。最近5月了看很多人在开始研究小市值交易,我在聚宽上面找了一个不错的利用高速系统2.0对接实盘交易。改一下策略授权码可以找我要就可以比如 国九条后中小板微盘小改。这样就设置好了聚宽,点击回测看看效果。运行点击实盘点击运行,运行的结果。

2025-05-19 16:00:40 341

原创 量化研究---qmt撤单在下单算法研究

策略源代码2.0版本我全部上传了知识星球直接下载使用就可以参考教程。最近完善了小果聚宽交易成交系统高速服务器2,升级了不少内容,聚宽策略----国九条后中小板微盘小改,年化135.40%认识qmt的委托函数参数,我写的自定义查询委托函数。量化研究---qmt撤单在下单算法研究。非常的复杂不做量化交易的估计难理解。2:5分钟不成交撤单了重新下单。3:优化了交易算法,交易细节。5分钟不成交自动撤单了在下单。1:交易检查功能,自动补单。qmt官网给的委托函数参数。点击模型交易,选择策略。

2025-05-08 09:23:53 632

原创 量化研究---小果高频分时网格策略实盘2

今天测试完成了小果高频分时网格策略实盘2,测试交易没有问题我一下上传知识星球明天大家测试,测试没有问题我就加入波动率,ATR自动生成网格大小,网格的原理。4设置交易股票池,支持检查持股和自定义股票池,我主要用来做红利,银行,30年国债ETf,波动率稳定,30年债券非常不错。源代码我全部上传了知识星球大家下载了测试给我反馈问题我感觉,没有问题我就加入自动网格算法。量化研究---小果高频分时网格策略实盘,500行源代码。3设置交易的单元格大小,上涨卖出,下跌买入。量化研究---小果高频分时网格策略实盘2。

2025-04-29 09:40:52 408

原创 量化研究---小果全球大类低相关性动量趋势增强轮动策略实盘设置

小果全球大类低相关性动量趋势增强轮动策略实盘,我检查了一下代码,优化了一下代码数据的计算。量化研究---小果全球大类低相关性动量趋势增强轮动策略实盘设置。今天完成了宽邦策略交易系统,非常不错,对接策略交易。输入自定义交易金额,每一个标的交易多少。1补充历史历史数据在操作的下面。可以点击回测开开回测的数据结果。策略设置,支持多策略同时运行。实盘设置输入账户点击编辑进入。

2025-04-21 23:41:55 288

原创 聚宽策略----国九条后中小板微盘小改,年化135.40%

最近在研究的聚宽策略,一般技术分析的我直接转qmt了,财务因子有一点麻烦,我直接利用我开发强大的服务器系统,直接读取信号,最近在优化一下系统,最近在开发对接bigquant的交易系统,完成了api数据的对接。可以服务器查询授权码是否注册,可以找我注册,授权码必须唯一,一个策略一个,没有问题。测试没有问题把参数改成实盘就可以,是否测试参数改成否,开启临时id记录。源代码我全部上传知识星球了可以加入直接下载不懂的问我就可以量化支持。服务器接受的数据,输入授权码就可以:小果新国九条小市值策略。

2025-04-20 22:52:55 646

原创 量化研究---年化30%小果全球大类低相关性动量趋势增强轮动策略回测

小果全球大类低相关性动量趋势增强轮动策略我研究的利用趋势模型加动量模型,趋势模型用来选择交易时间,动量模型用来排序股票趋势强度,选择全球大类低相关性的标的来轮动这个也是我实盘的模型思路,全球配置,趋势降低,降低相关性,波动率。量化研究---年化30%小果全球大类低相关性动量趋势增强轮动策略回测。网页数据强大的仿真交易系统,我实盘的是全球大类低相关性策略。网页数据强大的仿真交易系统,我实盘的是全球大类低相关性策略。不懂的问我就可以,加我备注入群可以加入量化研究群。当然我也给了实盘的代码。

2025-04-17 10:53:36 430

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除