量化研究--推出强大西蒙斯金融量化交易数据库2

量化研究--推出强大西蒙斯金融量化交易数据库2

原创 L1511732 西蒙斯量化交易研究院 2025年09月09日 23:42 贵州

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途

目前金融数据很伤脑筋,以前东方财富给免费的获取,现在有限制了不方便模型分析,tushare需要付费,所以打算自己建立自己的数据库,把数据存储到服务器,方便回测,分析模型,我用了异步开发,速度是非常块的,西蒙斯金融量化交易数据库2做了重大的变化,数据全部入数据库,直接api去调用数据的接口数据,给了数据api,同时我对接了qmt,保留了实时数据的接口,实时数据不入数据库,直接获取就可以

使用的教程

西蒙斯金融量化交易数据库: 西蒙斯金融量化交易数据库https://gitee.com/li-xingguo11111/xms_quant_trader_data

https://gitee.com/li-xingguo11111/xms_quant_trader_data

图片

安装安装python,按win+r,输入cmd

详细的内容教程

量化研究--推出强大西蒙斯金融量化交易数据库2https://mp.weixin.qq.com/s/XtxXYp2GgPicjIwHQMrsQw

图片

输入安装的pip代码,按回车就可以

图片

安装代码直接pip安装方便

py -m pip install http://124.220.32.224:8888/xms_quant_trader_data-0.1-py3-none-any.whl

图片

安装成功了复制网页的代码运行就可以,前提的数据我还在上线

获取问财数据

图片

    from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_dataclient=xms_quant_trader_data(    url='http://14.103.193.242',    port='8080',    password='test')df=client.get_wencai_data(query='今日涨停')df=client.data_to_pandas(data=df)print(df)

    获取高频tick数据,实时的

    图片

      from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_dataclient=xms_quant_trader_data(    url='http://14.103.193.242',    port='8080',    password='test')df=client.get_full_tick(stock='513100.SH')print(df)

      输出的结果

      图片

              西蒙斯金融量化交易数据库2        作者:西蒙斯量化        微信:xms_quant
      服务器http://14.103.193.242 端口8080 授权码test{'513100.SH': {'timetag': '20250909 15:00:01', 'lastPrice': 1.701, 'open': 1.698, 'high': 1.701, 'low': 1.696, 'lastClose': 1.696, 'amount': 542998700, 'volume': 3196478, 'pvolume': 319647804, 'stockStatus': 5, 'openInt': 15, 'settlementPrice': 0, 'lastSettlementPrice': 1.696, 'askPrice': [1.701, 1.702, 1.703, 1.704, 1.705], 'bidPrice': [1.7, 1.699, 1.698, 1.697, 1.696], 'askVol': [8417, 25818, 10838, 6465, 6512], 'bidVol': [27226, 34602, 29614, 22349, 20823]}}   
      

      获取可转债日线数据

      图片

      from xms_quant_trader_data.xms_quant_trader_data import xms_quant_trader_datafrom datetime import datetimeclient=xms_quant_trader_data(    url='http://14.103.193.242',    port='8080',    password='test')df=client.get_bond_cov_daily_hist_data(    stock='113575',    start_date='20210101',    end_date='20500101')print(df)

      输出的结果

      图片

                     time     open     high      low    close   volume  ...  preClose  suspendFlag                date           成交额       涨跌幅     涨跌额165   1609689600000  133.500  137.780  131.500  136.150    13463  ...   134.160            0 2021-01-03 16:00:00  1.805654e+07  1.483304   1.990166   1609776000000  136.150  146.770  135.300  139.880    19954  ...   136.150            0 2021-01-04 16:00:00  2.767949e+07  2.739625   3.730167   1609862400000  139.890  147.000  139.100  143.590    17681  ...   139.880            0 2021-01-05 16:00:00  2.510949e+07  2.652273   3.710168   1609948800000  159.000  163.000  137.220  140.400    72201  ...   143.590            0 2021-01-06 16:00:00  1.061643e+08 -2.221603  -3.190169   1610035200000  140.060  140.380  133.210  133.250    25544  ...   140.400            0 2021-01-07 16:00:00  3.498512e+07 -5.092593  -7.150...             ...      ...      ...      ...      ...      ...  ...       ...          ...                 ...           ...       ...     ...1297  1756828800000  193.293  209.949  188.431  197.781   821468  ...   195.405            0 2025-09-02 16:00:00  1.636904e+09  1.215936   2.3761298  1756915200000  198.500  203.500  180.640  181.101   326564  ...   197.781            0 2025-09-03 16:00:00  6.226391e+08 -8.433570 -16.6801299  1757001600000  184.110  185.500  178.555  182.400   243188  ...   181.101            0 2025-09-04 16:00:00  4.439950e+08  0.717279   1.2991300  1757260800000  182.399  186.998  181.022  184.956   196799  ...   182.400            0 2025-09-07 16:00:00  3.622621e+08  1.401316   2.5561301  1757347200000  187.000  202.236  186.866  192.481  1138720  ...   184.956            0 2025-09-08 16:00:00  2.232478e+09  4.068535   7.525
      [1137 rows x 15 columns]

      我还写了不少数据的api还没有写文档可以直接下载使

      不懂的问我就可以,加我备注入群可以加入量化群

      目前写的数据api,还在上线其他的

      import pandas as pdimport jsonimport requestsclass xms_quant_trader_data:    '''    西蒙斯金融量化交易数据库2    作者:西蒙斯量化    微信:xms_quant    '''    def __init__(self,            url='http://14.103.193.242',            port='8080',            password='test'):        print('''        西蒙斯金融量化交易数据库2        作者:西蒙斯量化        微信:xms_quant        ''')        print('服务器{} 端口{} 授权码{}'.format(url,port,password))        self.url=url        self.port=port        self.password=password    def get_user_info(self):        '''        获取使用者信息        '''        url='{}:{}/{}?'.format(self.url,self.port,'get_user_info')        params={           'password':self.password        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def check_password_is_av_user(self):        '''        检查授权码是否可以使用        '''        url='{}:{}/{}?'.format(self.url,self.port,'check_password_is_av_user')        params={           'password':self.password        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def get_full_tick(self,stock='513100.SH'):        '''        获取tick数据        'time'                  #时间戳        'lastPrice'             #最新价        'open'                  #开盘价        'high'                  #最高价        'low'                   #最低价        'lastClose'             #前收盘价        'amount'                #成交总额        'volume'                #成交总量        'pvolume'               #原始成交总量        'stockStatus'           #证券状态        'openInt'               #持仓量        'lastSettlementPrice'   #前结算        'askPrice'              #委卖价        'bidPrice'              #委买价        'askVol'                #委卖量        'bidVol'                #委买量        'transactionNum'        #成交笔数        '''        url='{}:{}/{}?'.format(self.url,self.port,'get_full_tick')        params={            'password':self.password,            'stock':stock        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def get_full_all_tick(self,code_list=['513100.SH','600031.SH']):        '''        获取多个标的tick数据        http://127.0.0.1:5000/get_full_all_tick?code_list=513100.SH,600031.SH        'time'                  #时间戳        'lastPrice'             #最新价        'open'                  #开盘价        'high'                  #最高价        'low'                   #最低价        'lastClose'             #前收盘价        'amount'                #成交总额        'volume'                #成交总量        'pvolume'               #原始成交总量        'stockStatus'           #证券状态        'openInt'               #持仓量        'lastSettlementPrice'   #前结算        'askPrice'              #委卖价        'bidPrice'              #委买价        'askVol'                #委卖量        'bidVol'                #委买量        'transactionNum'        #成交笔数        '''        url='{}:{}/{}?'.format(self.url,self.port,'get_full_all_tick')        params={            'password':self.password,            'code_list':','.join(code_list)        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def get_market_data_ex(self,            stock_code='513100.SH',             period='1d',             start_time='20250101',             end_time='20500101',             count=-1):        '''        获取历史行情数据        :param field_list: 行情数据字段列表,[]为全部字段            K线可选字段:                "time"                #时间戳                "open"                #开盘价                "high"                #最高价                "low"                 #最低价                "close"               #收盘价                "volume"              #成交量                "amount"              #成交额                "settle"              #今结算                "openInterest"        #持仓量            分笔可选字段:                "time"                #时间戳                "lastPrice"           #最新价                "open"                #开盘价                "high"                #最高价                "low"                 #最低价                "lastClose"           #前收盘价                "amount"              #成交总额                "volume"              #成交总量                "pvolume"             #原始成交总量                "stockStatus"         #证券状态                "openInt"             #持仓量                "lastSettlementPrice" #前结算                "askPrice1", "askPrice2", "askPrice3", "askPrice4", "askPrice5" #卖一价~卖五价                "bidPrice1", "bidPrice2", "bidPrice3", "bidPrice4", "bidPrice5" #买一价~买五价                "askVol1", "askVol2", "askVol3", "askVol4", "askVol5"           #卖一量~卖五量                "bidVol1", "bidVol2", "bidVol3", "bidVol4", "bidVol5"           #买一量~买五量        :param stock_list: 证券代码 "000001.SZ"        :param period: 周期 分笔"tick" 分钟线"1m"/"5m" 日线"1d"        :param start_time: 起始时间 "20200101" "20200101093000"        :param end_time: 结束时间 "20201231" "20201231150000"        :param count: 数量 -1全部/n: 从结束时间向前数n个        :param dividend_type: 除权类型"none" "front" "back" "front_ratio" "back_ratio"        :param fill_data: 对齐时间戳时是否填充数据,仅对K线有效,分笔周期不对齐时间戳            为True时,以缺失数据的前一条数据填充                open、high、low、close 为前一条数据的close                amount、volume为0                settle、openInterest 和前一条数据相同            为False时,缺失数据所有字段填NaN        :return: 数据集,分笔数据和K线数据格式不同            period为'tick'时:{stock1 : value1, stock2 : value2, ...}                stock1, stock2, ... : 合约代码                value1, value2, ... : np.ndarray 数据列表,按time增序排列            period为其他K线周期时:{field1 : value1, field2 : value2, ...}                field1, field2, ... : 数据字段                value1, value2, ... : pd.DataFrame 字段对应的数据,各字段维度相同,index为stock_list,columns为time_list                '''        url='{}:{}/{}?'.format(self.url,self.port,'get_market_data_ex')        params={            'password':self.password,            'stock_code':stock_code,             'period':period,             'start_time':start_time,             'end_time':end_time,                                 }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def data_to_pandas(self,data):        try:            df=pd.DataFrame(data)        except:            df=pd.DataFrame()            for keys,value in data.items():                df[keys]=[value]                        return df    def get_wencai_data(self,        query='今日涨停',        ):        '''        获取问财数据        '''        url='{}:{}/{}?'.format(self.url,self.port,'get_wencai_data')        params={            'password':self.password,            'query':query        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def get_user_def_data(self,        name='df',        func= """        import akshare as ak        df = ak.stock_zt_pool_em(date='20250711')        """):        '''        获取自定义函数数据        '''        url='{}:{}/{}?'.format(self.url,self.port,'get_user_def_data')        params={            'password':self.password,            'name':name,            "func":func        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res        def get_bond_cov_spot_data(self,            url='http://124.220.32.224',            port='8023',            date='20250711'):        '''        获取可转债实时数据        '''        func='''        import requests        import pandas as pd        try:            url='{}:{}/data/实时数据/{}.json?t=1752251108452'            res=requests.get(url=url)            res=res.json()            df=pd.DataFrame(res)        except Exception as e:            print(e,'获取实时数据表有问题')            df=pd.DataFrame()        '''.format(url,port,date)        df=self.get_user_def_data(func=func)        return df    def get_bond_cov_all_mr_factor_data(self,            url='http://124.220.32.224',            port='8023',            date='20250711'):        '''        获取可转债全部默认因子数据        '''        func='''        import requests        import pandas as pd        try:            url='{}:{}/data/全部默认因子/{}.json?t=1752251108452'            res=requests.get(url=url)            res=res.json()            df=pd.DataFrame(res)        except Exception as e:            print(e,'获取全部默认因子表有问题')            df=pd.DataFrame()        '''.format(url,port,date)        df=self.get_user_def_data(func=func)        return df    def get_bond_cov_all_connect_factor_data(self,            url='http://124.220.32.224',            port='8023',            date='20250711'):        '''        获取可转债合成因子因子数据        '''        func='''        import requests        import pandas as pd        try:            url='{}:{}/data/合成因子/{}.json?t=1752251108452'            res=requests.get(url=url)            res=res.json()            df=pd.DataFrame(res)        except Exception as e:            print(e,'获取全部默认因子表有问题')            df=pd.DataFrame()        '''.format(url,port,date)        df=self.get_user_def_data(func=func)        return df    def get_instrument_detail(self,stock='600031.SH'):        '''        获取可标的的基础数据        ExchangeID - string 合约市场代码        InstrumentID - string 合约代码        InstrumentName - string 合约名称        ProductID - string 合约的品种ID(期货)        ProductName - string 合约的品种名称(期货)        ExchangeCode - string 交易所代码        UniCode - string 统一规则代码        CreateDate - str 上市日期(期货)        OpenDate - str IPO日期(股票)        ExpireDate - int 退市日或者到期日        PreClose - float 前收盘价格        SettlementPrice - float 前结算价格        UpStopPrice - float 当日涨停价        DownStopPrice - float 当日跌停价        FloatVolume - float 流通股本        TotalVolume - float 总股本        LongMarginRatio - float 多头保证金率        ShortMarginRatio - float 空头保证金率        PriceTick - float 最小价格变动单位        VolumeMultiple - int 合约乘数(对期货以外的品种,默认是1)        MainContract - int 主力合约标记,1、2、3分别表示第一主力合约,第二主力合约,第三主力合约        LastVolume - int 昨日持仓量        InstrumentStatus - int 合约停牌状态        IsTrading - bool 合约是否可交易        IsRecent - bool 是否是近月合约        OpenInterestMultiple - int 交割月持仓倍数         '''        url='{}:{}/{}?'.format(self.url,self.port,'get_instrument_detail')        params={            'password':self.password,            'stock':stock        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        return res    def get_all_maker_stock(self):        '''        获取全市场股票        '''        file_path: str = '/data/全市场股票/',        file_name: str = '全市场股票'        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def adjust_stock_1(self,x=''):        return '0'*(6-len(str(x)))+str(x)    def adjust_stock(stock='600031.SH'):        '''        调整代码        '''        if stock[-2:]=='SH' or stock[-2:]=='SZ' or stock[-2:]=='sh' or stock[-2:]=='sz':            stock=stock.upper()        else:            if stock[:3] in ['600','601','603','605','688','689',                ] or stock[:2] in ['11','51','58'] or stock[:1] in ['5']:                stock=stock+'.SH'            else:                stock=stock+'.SZ'        return stock    def get_stock_daily_hist_data(self,stock='301088',start_date='20200101',end_date='20500101'):        '''        获取股票日线行情数据        '''        file_path: str = '/data/股票日线行情/'        file_name: str = '{}'.format(stock)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        df['date']=pd.to_datetime(df['time'],unit='ms')        df=df[df['date']>=start_date]        df=df[df['date']<=end_date]        return df    def get_maker_all_ETF(self):        '''        获取市场全部ETF        '''        file_path= '/data/{}/'.format('市场全部ETF')        file_name= '{}'.format('市场全部ETF')        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def get_ETF_daily_hist_data(self,stock='512890',start_date='20200101',end_date='20500101'):        '''        获取ETF日线行情数据        '''        file_path: str = '/data/ETF日线行情/'        file_name: str = '{}'.format(stock)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        df['date']=pd.to_datetime(df['time'],unit='ms')        df=df[df['date']>=start_date]        df=df[df['date']<=end_date]        return df    def get_maker_bond_cov_data(self):        '''        获取全市场可转债        '''        file_path= '/data/{}/'.format('全部可转债')        file_name= '{}'.format('全部可转债')        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def get_bond_cov_daily_hist_data(self,stock='113575',start_date='20200101',end_date='20500101'):        '''        获取可转债日线行情数据        '''        file_path: str = '/data/可转债日线行情/'        file_name: str = '{}'.format(stock)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        df['date']=pd.to_datetime(df['time'],unit='ms')        df=df[df['date']>=start_date]        df=df[df['date']<=end_date]        return df    def stock_fund_flow_individual(self,date='20250909',symbol='3日排行'):        '''        同花顺个股资金流        symbol="即时"; choice of {“即时”, "3日排行", "5日排行", "10日排行", "20日排行"}        输出结果        名称  类型  描述        序号  int32   -        股票代码    int64   -        股票简称    object  -        最新价 float64 -        阶段涨跌幅   object  注意单位: %        连续换手率   object  注意单位: %        资金流入净额  float64 注意单位: 元        '''        file_path= '/data/同花顺个股资金流/'        file_name= '{}_{}'.format(date,symbol)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def stock_fund_flow_concept(self,date='20250909',symbol='3日排行'):        '''        同花顺概念资金流        输出参数-3日、5日、10日和20日        名称  类型  描述        序号  int32   -        行业  object  -        公司家数    int64   -        行业指数    float64 -        阶段涨跌幅   object  注意单位: %        流入资金    float64 注意单位: 亿        流出资金    float64 注意单位: 亿        净额  float64 注意单位: 亿        '''        file_path= '/data/同花顺概念资金流/'        file_name= '{}_{}'.format(date,symbol)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def stock_fund_flow_industry(self,date='20250909',symbol='3日排行'):        '''        同花顺行业资金流        输出参数-3日、5日、10日和20日        名称  类型  描述        序号  int32   -        行业  object  -        公司家数    int64   -        行业指数    float64 -        阶段涨跌幅   object  注意单位: %        流入资金    float64 注意单位: 亿        流出资金    float64 注意单位: 亿        净额  float64 注意单位: 亿        '''        file_path= '/data/同花顺行业资金流/'        file_name= '{}_{}'.format(date,symbol)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def stock_individual_fund_flow_rank(self,date='20250909',indicator='3日'):        '''        东方财富个股资金流排名        indicator="今日"; choice {"今日", "3日", "5日", "10日"}        名称  类型  描述        序号  int64   -        代码  object  -        名称  object  -        最新价 float64 -        今日涨跌幅   float64 注意单位: %        今日主力净流入-净额  float64 -        今日主力净流入-净占比 float64 注意单位: %        今日超大单净流入-净额 float64 -        今日超大单净流入-净占比    float64 注意单位: %        今日大单净流入-净额  float64 -        今日大单净流入-净占比 float64 注意单位: %        今日中单净流入-净额  float64 -        今日中单净流入-净占比 float64 注意单位: %        今日小单净流入-净额  float64 -        今日小单净流入-净占比 float64 注意单位: %        '''        file_path= '/data/东方财富个股资金流排名/'        file_name= '{}_{}'.format(date,indicator)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def stock_sector_fund_flow_rank(self,                date='20250909',                indicator='今日',                sector_type='行业资金流'                ):        '''        东方财富板块资金流排名        indicator   str indicator="今日"; choice of {"今日", "5日", "10日"}        sector_type str sector_type="行业资金流"; choice of {"行业资金流", "概念资金流", "地域资金流"}                名称  类型  描述        序号  int64   -        名称  object  -        今日涨跌幅   float64 注意单位: %        主力净流入-净额    float64 -        主力净流入-净占比   float64 注意单位: %        超大单净流入-净额   float64 -        超大单净流入-净占比  float64 注意单位: %        大单净流入-净额    float64 -        大单净流入-净占比   float64 注意单位: %        中单净流入-净额    float64 -        中单净流入-净占比   float64 注意单位: %        小单净流入-净额    float64 -        小单净流入-净占比   float64 注意单位: %        主力净流入最大股    object  -        '''        file_path= '/data/东方财富板块资金流排名/'        file_name= '{}_{}_{}'.format(date,indicator,sector_type)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return df    def stock_main_fund_flow(self,date='20250909',symbol='全部股票'):        '''        东方财富主力净流入排名        symbol  str symbol="全部股票";choice of {"全部股票", "沪深A股", "沪市A股", "科创板", "深市A股", "创业板", "沪市B股", "深市B股"}        输出参数        名称  类型  描述        序号  int64   -        代码  object  -        名称  object  -        最新价 float64 -        今日排行榜-主力净占比 float64 注意单位: %        今日排行榜-今日排名  float64 -        今日排行榜-今日涨跌  float64 注意单位: %        5日排行榜-主力净占比 float64 注意单位: %        5日排行榜-5日排名  int64   -        5日排行榜-5日涨跌  float64 注意单位: %        10日排行榜-主力净占比    float64 注意单位: %        10日排行榜-10日排名    int64   -        10日排行榜-10日涨跌    float64 注意单位: %        所属板块    object  -        '''        file_path= '/data/东方财富主力净流入排名/'        file_name= '{}_{}'.format(date,symbol)        url='{}:{}/{}?'.format(self.url,self.port,'get_user_base_data')        params={            'password':self.password,            'file_path':file_path,            "file_name":file_name        }        response = requests.get(            url=url,            params=params,            timeout=300        )        res=response.json()        df=self.data_to_pandas(res)        return dfif __name__=='__main__':    '''    西蒙斯金融量化交易数据库    作者:西蒙斯量化    微信:xms_quant    '''    client=xms_quant_trader_data(        #url='http://127.0.0.1'               )    df=client.get_full_tick()    print(df)       
      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包

      打赏作者

      xg_quant

      你的鼓励将是我创作的最大动力

      ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
      扫码支付:¥1
      获取中
      扫码支付

      您的余额不足,请更换扫码支付或充值

      打赏作者

      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值