阿里月薪 30k 的数据分析师,都有哪些必备技能?其实一点都不邪乎

本文分析了现代数据分析师面临的挑战,指出只会基础数据处理的分析师将面临生存空间压缩。核心技能包括统计学、搭建指标体系、掌握数据分析工具(如SQL、Excel、FineBI)和数据可视化。强调统计学的重要性,搭建指标库以增强话语权,以及使用FineBI等专业工具提升效率。同时,数据可视化进阶需掌握Python和BI工具,例如FineBI的图表联动和钻取功能。建议数据分析师加强这些技能,以提升职场竞争力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

越来越多的数据分析师们开始焦虑,我就经常收到各种留言:

挂着数据分析师的title,每天只是整理需求、取数、做表…
业务部门把一些数据工作接手过去,自己慢慢闲了下来…
熬夜加班做出来的报告成为老板的压箱底,我的价值不被认可…
眼看着身边同事升职加薪,自己却在原地踏步,不想温水里煮青蛙,但面试大公司又无果,不知道该怎么努力了。

其实啊,这样的困扰是很正常的,因为现代企业对数据分析师的要求越来越高了。随着数据分析工具越来越先进,只会跑数、做表的数据分析师,生存空间会越来越小。

从招聘需求就能看出来,现在的数据分析师都要求要会搭建数据指标体系,熟悉业务,归因问题,给出决策建议…在这里插入图片描述
和几个资深的大厂数据分析师聊了一下,我总结出目前数据分析师的必备技能,无论是跳槽还是升职都要尽快Get起来。

一、硬技能

1、统计学

统计学是数据分析的理论基础,可以让数据分析更加系统化,很多人在具体工作中常常不知道该用什么方法寻找数据规律,就是因为统计理论学的不扎实。

对于数据分析小白来说,掌握基础理论知识和公式计算就算入门了,比如:集中趋势分析的平均数、众数、中位数等,用于离中趋势分析的方差、平均差、标准差等,概率及分布、假设检验等。

要想实现进阶,就需要掌握更多的分析思路和分析方法,比如:研究对象之间是否存在依存关系的分析,研究同类别不同个体之间的差异分析,研究不同类别之间的关联分析,研究两个以上样本均数差别的方差分析,确定两种以上变数间依赖关系的回归分析等。

2、搭建指标库

搭建指标体系能大大提高数据分析师的话语权和不可替代性,是数据分析岗进阶的核心竞争力。现在各大招聘网站上的热门岗位,都会明确要求会搭建指标体系。

具体的搭建流程如下:在这里插入图片描述
3、数据分析工具

基础工具如SQL、Excel是一定要掌握的,Python、R语言可以视情况而定。不过要想拿高薪,实现职场进阶,像FineBI这样的专业BI工具是必不可少的。

FineBI最大的特点就是专业、简单、好用。它的自助数据集功能,能快速进行取数和数据清洗:在这里插入图片描述
4、可视化

Excel可以实现大部分的图表需求,但这只是基础。如果要实现可视化的进阶,需要用到编程绘制和BI工具。

比如常见的多元分析,用Excel就非常麻烦,但是在IPython只需要一行代码。

比如做交互和动态报表,Excel不能胜任,这时候就需要专业的BI工具了。

拿FineBI举例,不仅有比Excel更丰富的图表样式以满足不同分析场景,还可以用多个图表搭建驾驶舱,通过图表间联动和钻取,大大提高分析的灵活性,无论是自己分析还是做汇报,FineBI比Excel+PPT搭配的效果还要强的多。
综上所述python数据分析重中之重,作用不容小觑。
一起加油,冲python啊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值