梯度下降线性回归问题

本文介绍了一种使用梯度下降法进行参数调整的方法,并通过一个具体的实例展示了如何通过迭代来最小化损失函数,实现对模型参数的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np


def func(x1, x2, y):

    global st0, st1, st2, del0, del1, del2

    st0, st1, st2 = 0, 0, 0

    del0, del1, del2 = 1, 1, 1

    a = 0.01

    for i in range(200):
        st0 = st0 - a * (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * 1
        st1 = st1 - a * (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * x1[i % 5]
        st2 = st2 - a * (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * x2[i % 5]
        del0 = (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * 1
        del1 = (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * x1[i % 5]
        del2 = (funcc(x1[i % 5], x2[i % 5]) - y[i % 5]) * x2[i % 5]

        if (abs(del0) < 0.01 and abs(del1) < 0.01 and abs(del2) < 0.01):
            print(del0, del1, del2)
            break
def funcc(x1, x2):
    return st0 + st1 * x1 + st2 * x2

#代入数据
if __name__ == '__main__':
    x1 = np.array([2.104, 1.600, 2.400, 1.416, 3.000])
    x2 = np.array([3, 3, 3, 2, 4])
    y = np.array([4.00, 3.30, 3.69, 2.32, 5.40])
    func(x1, x2, y)

运行结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值