今天学搜索策略的收获(个人笔记)

本文探讨了深度优先、广度优先、爬山策略、最佳优先(Best-first)、剪枝方法在解决复杂问题如8-puzzle中的应用。A*算法通过结合启发式信息以寻找最优解,同时分析了旅行商问题的解决思路。博客强调了各种算法的优缺点及实际操作中的策略选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言,此博客仅用于个人笔记,因此十分简略,对各位渴望寻求新知识的网友们可能帮助不大,急于解决问题同学的请不要浪费时间阅览此文。

1.深度优先和广度优先

这是耳熟能详的搜索策略,然而这两个方法在大多数情况下表现并不出色。

2.爬山策略

爬山策略通过给每个结点添加一个测度来实现贪心,可以说是深度优先和贪心算法的结合。
在这里插入图片描述
然而爬山并一定不能保证找到最优解,因为他的贪心策略经不起推敲。以puzzle为例子,
在这里插入图片描述
可以看到爬山全然不管其它分治,一个劲往下钻,简直就是进化版的深度优先
可以看到爬山全然不管其它分支,一个劲往下钻,简直就是进化版的深度优先。

3.Best first

因为爬山法实在是太过莽撞,可能会误入歧途,陷入一个死循环,因此有人对它进行了改进,这就是我们看到的best-first算法。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值