
机器学习
文章平均质量分 95
机器学习和深度学习的模型
梦醒沉醉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
初识机器学习以及单变量线性回归
机器学习是一种不需要明确编程就能让计算机学习的研究领域。机器学习可以分为:监督学习和无监督学习。原创 2024-09-07 16:43:23 · 758 阅读 · 0 评论 -
多变量线性回归以及多项式回归
本周主要学习了多变量线性回归和多项式回归,简单了解了特征工程以及如下用scikit-learn库进行线性回归和多项式回归。本文以多变量线性回归为例子,详细讲解了如何选择合适的迭代次数和学习率。特征工程需要从原始数据中提取、构建和选择特征,以便提高机器学习模型的性能。本周,我学习了多变量线性回归、多项式回归,对特征工程有了初步的了解,明白了如何选择合适的迭代次数和学习率。下周,我将学习了逻辑回归和正则化。原创 2024-09-14 19:03:00 · 567 阅读 · 0 评论 -
L1和L2正则化
L1L2L∞。原创 2024-09-27 19:21:40 · 773 阅读 · 0 评论 -
对多变量线性回归的补充
刘浩洋,户将,李勇锋,文再文 最优化:建模、算法与理论。关于0的次梯度:根据次梯度的定义,可以得到。后的多变量线性回归。模型不变,代价函数为。后的多变量线性回归。模型不变,代价函数为。和b的梯度下降公式为。原创 2024-10-01 20:36:57 · 834 阅读 · 0 评论 -
逻辑回归以及正则化
本周,我学习了逻辑回归,了解了过拟合和欠拟合的现象以及如何利用正则化惩罚模型的权重来解决过拟合问题。文章最后介绍了如何使用scikit-learn进行逻辑回归。本周,我学习了逻辑回归以及如何利用正则化解决模型的过拟合问题。下周,我将初步学习神经网络。原创 2024-09-21 09:47:11 · 1460 阅读 · 0 评论 -
Softmax回归
独热编码是一种处理分类特征的方法,它将分类变量转换为机器学习算法可以更好地处理的形式。在独热编码中,每个类别值都被表示为一个二进制向量,除了表示该类别的一个位置是1以外,其余位置都是0。softmax函数输出的是一个向量,对应位置上的值是样本属于该类别的概率,比如softmax输出的向量为。举个例子,比如说水果现在有三种:苹果,香蕉,西瓜。个训练样本经softmax回归输出的向量。Softmax回归是一般化的逻辑回归,用来解决多分类问题。个类别,每个类别的权重和偏置分别为。个训练样本的独热编码,也就是。原创 2024-10-02 19:40:11 · 972 阅读 · 0 评论 -
初识神经网络
本周,我初步学习了神经网络,了解了神经网络的基础——感知机以及神经网络中的的前向传播和反向传播算法。本周,我学习了感知机,神经网络的前向传播和反向传播算法。下周,我将学习神经网络中的不同激活函数以及多分类问题。原创 2024-09-28 19:51:01 · 1032 阅读 · 0 评论 -
其他激活函数以及多分类问题
本周,我学了神经网络中其他的激活函数以及通过PyTorch构建了多分类神经网络。本周,我学了神经网络中其他的激活函数以及通过PyTorch构建了多分类神经网络。下周,我将学习神经网络中的正则化。原创 2024-10-05 12:43:39 · 1211 阅读 · 0 评论 -
神经网络的正则化(一)
神经网络中的正则化方法。原创 2024-11-16 21:59:59 · 1631 阅读 · 0 评论 -
神经网络的正则化(二)
Dropout,BatchNormalization,LayerNormalization。原创 2024-11-24 12:45:44 · 873 阅读 · 0 评论 -
神经网络中的优化方法(一)
神经网络中优化的挑战,基本优化算法和参数初始化策略。原创 2024-11-30 22:18:49 · 1198 阅读 · 0 评论 -
神经网络中的优化方法(二)
自适应算法、二阶近似方法和优化策略。原创 2024-12-07 09:48:35 · 890 阅读 · 0 评论 -
卷积神经网络
本周,我学习卷积神经网络中的卷积层和池化层,了解它们的作用。本周,我学习卷积神经网络中的卷积层和池化层,了解它们的作用。下周,我将学习一些经典卷积神经网络模型,如ResNet。原创 2024-10-12 12:01:59 · 990 阅读 · 0 评论 -
反卷积(上采样)
反卷积原创 2025-01-08 21:17:16 · 742 阅读 · 0 评论 -
VGG和ResNet
本周,我学习了两个经典卷积神经网络模型——VggNet和ResNet。VggNet训练参数量巨大,而ResNet训练参数相较于VggNet少了很多,并且能有效解决深层神经网络的退化问题。ImageNet数据集(官网下载需要教育邮箱,这里我使用了Kaggle上的一个ImageNet数据集)给出了1000个种类,不同种类图片的尺寸都不相同,因此需要对数据进行预处理。在进行预处理之前,需要自定义数据集类,如此才能利用PyTorch中的DataLoader加载数据。原创 2024-10-19 12:47:10 · 1123 阅读 · 0 评论 -
R-CNN
R-CNN原创 2024-12-14 15:35:51 · 875 阅读 · 0 评论 -
Fast R-CNN
Fast R-CNN是针对R-CNN缺点改进的目标检测模型原创 2024-12-21 12:52:26 · 1087 阅读 · 0 评论 -
Faster R-CNN
Faster R-CNN原创 2024-12-28 16:08:40 · 1102 阅读 · 0 评论 -
Single Shot MultiBox Detector(SSD)
SSD原创 2025-01-04 13:14:02 · 857 阅读 · 0 评论 -
Fully Convolutional Networks for Semantic Segmentation
利用全卷积神经网络来进行语义分割原创 2025-01-11 09:24:26 · 1115 阅读 · 0 评论 -
RefineNet
RefineNet原创 2025-01-16 18:57:32 · 753 阅读 · 0 评论 -
PSPNet
PSPNet原创 2025-01-25 21:12:17 · 1205 阅读 · 0 评论 -
DeepLabv3
DeepLabV3原创 2025-02-09 10:57:37 · 826 阅读 · 0 评论 -
OpenPose
OpenPose原创 2025-02-16 15:45:44 · 2983 阅读 · 0 评论 -
HigherHRNet
HigherHRNet原创 2025-02-23 13:11:31 · 800 阅读 · 0 评论 -
Cascaded Pyramid Network for Multi-Person Pose Estimation
Cascaded Pyramid Network原创 2025-03-09 11:06:17 · 1019 阅读 · 0 评论 -
AlphaPose
AlphaPose原创 2025-03-02 15:16:19 · 1338 阅读 · 0 评论 -
循环神经网络
本周,我学习了循环神经网络,深入了解了LSTM和GRU。本周,我学习了循环神经网络,深入了解了LSTM和GRU。下周,我将学习注意力机制。原创 2024-10-27 16:55:17 · 1063 阅读 · 0 评论 -
LSTA: Long Short-Term Attention for Egocentric Action Recognition
LSTA原创 2025-03-16 14:29:22 · 946 阅读 · 0 评论 -
EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Action Recognition
TBN原创 2025-03-23 12:19:29 · 942 阅读 · 0 评论 -
注意力机制
注意力机制——缩放点积注意力和多头注意力原创 2024-11-02 19:55:08 · 953 阅读 · 0 评论 -
Transformer
Transformer模型原创 2024-11-09 20:28:21 · 732 阅读 · 0 评论 -
With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition
With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition原创 2025-04-05 15:15:24 · 959 阅读 · 0 评论 -
Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition
Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition原创 2025-03-30 15:07:02 · 473 阅读 · 0 评论 -
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
RAG原创 2025-04-12 22:46:35 · 1419 阅读 · 0 评论