手写bpnn算法实现iris多分类
东北大学工业智能专业机器学习实验的一个作业,手写bpnn,我实在是写不出来,在网上参考了github大神的代码,再自己修改一下得到了要的代码。
原代码地址:https://github.com/RiptideBo/simpy/blob/master/deep_learning/models/bpnn.py
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-1 * x))
class layerbuild: #建造层
def __init__(
self, units, activation=None, learning_rate=None, is_input_layer=False
):
"""
:param units: 每层的神经元数量,第一层必须和x的特征数相同,最后一层要和进行onehot编码后的y的特征数相同
"""
self.units = units
self.weight = None
self.bias = None
self.activation = activation
if learning_rate is None:
learning_rate = 0.3
self.learn_rate = learning_rate
self.is_input_layer = is_input_layer
def initializer(self, back_units):
self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units)))
self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T
#随机化权重和偏置
if self.activation is None:
self.activation = sigmoid
def cal_gradient(self):
if self.activation == sigmoid:
gradient_mat = np.dot(self.output, (1 - self.output).T)
gradient_activation = np.diag(np.diag(gradient_mat))
else:
gradient_activation = 1
return gradient_activation
def forward_propagation(self, xdata):
self.xdata = xdata
if self.is_input_layer:
self.wx_plus_b = xdata
self.output = xdata
return xdata
else:
self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias
self.output = self.activation(self.wx_plus_b)
return self.output
def backpropagation(self, gradient):
gradient_activation = self.cal_gradient() # i * i 维
gradient = np.asmatrix(np.dot(gradient.T, gradient_activation))
self._gradient_weight = np.asmatrix(self.xdata)
self._gradient_bias = -1
self._gradient_x = self.weight
self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T)
self.gradient_bias = gradient * self._gradient_bias
self.gradient = np.dot(gradient, self._gradient_x).T
self.weight = self.weight - self.learn_rate * self.gradient_weight
self.bias = self.bias - self.learn_rate * self.gradient_bias.T
# 更新权重和偏置
return self.gradient
class BPNN:
def __init__(self):
self.layers = []
self.train_mse = []
def add_layer(self, layer):
self.layers.append(layer)
def build(self):
for i, layer in enumerate(self.layers[:]):
if i < 1:
layer.is_input_layer = True
else:
layer.initializer(self.layers[i - 1].units)
def train(self, xdata, ydata, max_train_round, accuracy):
self.max_train_round = max_train_round
self.accuracy = accuracy
x_shape = np.shape(xdata)
k=0
#k用来记录训练轮数
for round_i in range(max_train_round):
all_loss = 0
k+=1
for row in range(x_shape[0]):
_xdata = np.asmatrix(xdata[row, :]).T
_ydata = np.asmatrix(ydata[row, :]).T
for layer in self.layers:
_xdata = layer.forward_propagation(_xdata)
loss, gradient = self.cal_loss(_ydata, _xdata)
all_loss = all_loss + loss
for layer in self.layers[:0:-1]:
gradient = layer.backpropagation(gradient)
mse = all_loss / x_shape[0]
self.train_mse.append(mse)
if mse < self.accuracy:
print("训练集上达到预设精度,所用训练轮数为:{}轮".format(k))
#print(self.train_mse)
xx=np.arange(1,k+1)
xx=xx.reshape(-1,1)
yy=self.train_mse
yy=np.array(self.train_mse)
yy=yy.reshape(-1,1)
plt.plot(xx,yy)
plt.xlabel("train_round")
plt.ylabel("error")
return print("分类准确率为",1-mse)
if k==self.max_train_round:
print("训练集上未达到预设精度,所用训练轮数为:{}轮".format(k))
xx=np.arange(1,k+1)
xx=xx.reshape(-1,1)
yy=np.array(self.train_mse)
yy=yy.reshape(-1,1)
plt.plot(xx,yy)
plt.xlabel("train_round")
plt.ylabel("error")
plt.title("loss visualization")
return print("分类准确率为",1-mse)
def cal_loss(self, ydata, ydata_):
self.loss = -((1-ydata.T)*np.log(1-ydata_) + ydata.T * np.log(ydata_))
self.loss_gradient = 2 * (ydata_ - ydata)
return self.loss, self.loss_gradient
def predict(self,xdata):
y_pred=[]
x_shape = np.shape(xdata)
for row in range(x_shape[0]):
_xdata = np.asmatrix(xdata[row, :]).T
for layer in self.layers:
_xdata = layer.forward_propagation(_xdata)
#print(_xdata)
_xdata=list(_xdata)
y_pred.append(_xdata.index(max(_xdata)))
y_pred=np.array(y_pred)
return y_pred
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris_1 = load_iris()
#加载鸢尾花数据集
x = iris_1['data']
y = iris_1['target']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)
import pandas as pd
y_train=y_train.reshape(-1,1)
y_train=pd.DataFrame(y_train)
y_train.columns=['type']
y_train1 = pd.get_dummies(y_train.type, prefix='type')
y_train=np.array(y_train1)
#这四行代码是将y转化为onehot编码
#使用方法:先实例化,然后构建层
model = BPNN()
for i in (4, 10, 20, 3):
model.add_layer(layerbuild(i))
#这里是构建层,注意,第一层的数字必须和x的特征数一样,最后一层是输出,和y的特征数一样。
#x有四个特征,所以第一个是4,y有三类,所以最后的数字是3
#中间两个是隐层,数字任选,你可以调参观察中间的数字变化对于训练轮数有何影响。
model.build()
model.train(xdata=x_train, ydata=y_train, max_train_round=500, accuracy=0.05)
print("测试集上的准确度为:",accuracy_score(model.predict(x_test),y_test))
这个可以实现多分类预测,如果你要预测别的数据集的话就把加载数据的部分改一下,然后记得把y转化为二维向量,就是必须要用reshape
,再把y用onehot编码转换一下,这个看代码照葫芦画瓢应该能会吧。
最后,如果你也是工业智能的学生恰好刷到了这篇文章,要参考这里的代码的话,记得改一下变量名hhh