自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 论文阅读《CrossFusion: A Multi-Scale Cross-Attention Convolutional Fusion Model for Cancer Survival Pr》

WSIs的巨大尺寸和异质性使得AI模型难以捕捉高层次的全局组织模式和细粒度的细胞细节,这些对于稳健的生存分析都是至关重要的。然而,这些方法通常忽略了某些分辨率水平,或者依赖于次优的融合技术,留下了两个关键挑战未解决:有效地结合来自多个尺度的互补信息,以及开发稳健的方法来融合这些特征。为了解决这些挑战,我们提出了CrossFusion,一种新颖的框架,将WSIs的多尺度图像块嵌入统一成一个单一的预测表示。我们在来自公共数据集的六种癌症类型上验证了我们的方法,展示了与现有最先进方法相比的显著改进。

2025-03-16 17:17:27 942 1

原创 论文阅读《Cross-scale multi-instance learning for pathological image diagnosis》

Hashimoto等人(Hashimoto等人,2020a)提出了一种创新的基于CNN的方法,用于癌症亚型分类,有效地整合了多个实例、领域对抗和多尺度学习框架,结合了不同尺度的知识。我们的方法遵循类似的设计,利用我们的数据集训练对比学习模型SimSiam(Chen和He,2021),作为表型编码器(Es)从图像块(Is)中提取高级表型特征(Fs),如方程1所示。提出的CS-MIL模型在大多数评估指标上超越了其他模型,突出了跨尺度注意力的有效性,它全面学习多个尺度的信息,并考虑了MIL中的跨尺度关系。

2024-12-30 22:59:59 1311 2

原创 论文阅读《Whole slide images based cancer survival prediction using attentionguided deep multiple insta》

与当前基于图像的生存模型不同,这些模型限制于来自整个幻灯片图像(WSIs)的关键块或聚类,我们提出了一种名为深度注意力多重实例生存学习(DeepAttnMISL)的方法,通过引入孪生MIL-FCN和基于注意力的MIL池化,有效地从WSI学习成像特征,然后聚合WSI级别的信息到患者级别。这些识别出的重要区域和补丁更有可能与预后相关,总体上,所提出的模型可以实现更好的患者级别预测,并提高预测性能,优于我们之前的工作(Yao et al., 2019)。所提出的框架的目的是预测整个幻灯片图像的患者结果。

2024-12-30 00:43:15 1315 1

原创 HIPT论文阅读

对于计算病理学中的千兆像素全切片成像(WSI),WSIs的尺寸可以大至150000×150000像素,在20倍放大倍数下,展现出不同分辨率下的视觉标记的层次结构:从16×16的图像捕获单个细胞,到4096×4096的图像表征组织微环境中的相互作用。受多尺度、金字塔式图像处理的启发[12,43,63],最近在ViT架构开发中的进展集中在效率和多尺度信息的整合上(例如- Swin, ViL, TNT, PVT, MViT),以解决视觉标记的不同尺度/纵横比问题[28,32,52,74,83]。

2024-12-21 21:11:58 1450 1

原创 论文阅读(一)《 RethinkingMultipleInstanceLearningforWhole SlideImageClassification:AGoodInstance Classi》

弱监督的全切片图像(WSI)分类通常被表述为一个多实例学习(MIL)问题,其中每个切片被视为一个包,从中切出的小区域被视为包的实例。现有方法要么通过伪标记训练实例分类器,要么通过注意力机制聚合实例特征到包特征,然后训练包分类器,其中注意力分数可以用于实例级分类。然而,前者构建的伪实例标签通常包含大量噪声,后者构建的注意力分数也不够准确,这两者都影响了它们的性能。在本文中,我们提出了一个。

2024-07-04 20:27:42 787

原创 研一下第十八周论文阅读情况

其次,为了捕获整个幻灯片上的局部和全局模式,我们提出了一种新的视觉Transformer:GigaPath,用于在十亿像素病理幻灯片上预训练大型病理基础模型,并通过采用我们最近开发的LongNet方法来利用扩展的Self-Attention。具体来说,我们提出了。特别是,我们发现使用2300万个参数的较小版本的provi - gigapath也获得了比现有方法更好的性能,证明了两种模型在现实世界诊所中的应用:用于快速推理和微调的小模型,以及用于更准确推理的大模型(provi - gigapath)。

2024-06-25 19:32:27 1106 2

原创 研一下第十六周论文阅读情况

在我们的实验中,实现了精度、准确率和召回率的持续改进,但训练时间和内存消耗却大幅减少,这证明了ReMix的有效性和效率。在未来,我们的PseMix可以作为一种有前景的数据增强方法,帮助开发具有更好泛化和鲁棒性的WSI分类模型,用于临床病理学诊断。我们的ReMix可以显著改进先前的最先进的MIL分类方法,同时以更快的训练速度和更少的内存消耗展现了其有效性和效率。据我们所知,从数据增强的角度研究弱监督学习,以处理因训练数据不足和类别不平衡而受困扰的WSI分类问题,这方面的研究相对较少。

2024-06-12 15:07:54 908 1

原创 研一下第五周论文阅读情况

一、《Automatic segmentationof trabecular and corticalcompartments in HR‑pQCT imagesusing an embedding‑predictingU‑Net and morphologicalpost‑processing》1、Abstract:高分辨率外周定量计算机断层扫描(HR-pQCT)是一种新兴的骨微结构定量体内成像方式。然而,从HR-pQCT图像中提取定量的微建筑参数需要对图像进行精确的分割。目前使用半

2024-03-30 15:52:22 2770 1

原创 研一下第四周论文阅读情况

一、《In-context learning enables multimodal large language models to classify cancer pathology images》1、Abstract:医学图像分类需要标记的、针对特定任务的数据集,这些数据集用于从头开始训练深度学习网络,或用于微调基础模型。然而,这个过程在计算和技术上都很复杂。在语言处理领域,上下文学习提供了一种替代方案,即模型从提示中学习,无需更新参数。然而,上下文学习在医学图像分析领域的研究仍然不足。在本文中

2024-03-21 13:16:20 2285 1

原创 研一第二十一周论文阅读情况

一、《Benchmarking PathCLIP for Pathology Image Analysis》1、Abstract:准确的图像分类和检索对于临床诊断和治疗决策具有重要意义。最近的对比语言图像预训练(CLIP)模型在理解自然图像方面表现出了显着的能力。从CLIP中汲取灵感,PathCLIP专为病理学图像分析而设计,在训练中使用超过200,000个图像和文本对。虽然PathCLIP的性能令人印象深刻,但其在各种图像损坏下的鲁棒性仍然未知。因此,我们进行了广泛的评估,以分析P

2024-01-15 18:06:56 2299 1

原创 研一第十八周论文阅读情况

最后,我们证明了合成数据可以有效地训练AI模型。我们的实验结果表明,在各种设置下,CLAF在不平衡的图像数据集上优于基线,证实了CLAF在不平衡的SSL中表现出显著的表示学习能力。由于利用未标记数据和学习有意义的表示的优势,半监督学习和对比学习已经逐步结合,以在具有少量标记数据和大量未标记数据的流行应用中实现更好的性能。一种常见的方式是将伪标签分配给未标记的样本,并从伪标记的样本中选择正样本和负样本来应用对比学习。然而,真实世界的数据可能是不平衡的,导致伪标签偏向于大多数类,并进一步破坏对比学习的有效性。

2024-01-15 11:42:37 484 1

原创 研一第二十周论文阅读情况

具体来说,GPS-SSL摆脱了基于数据增强的常规正样本采样方法,而是通过在某些指定的嵌入空间中测量数据的最近邻居来生成正样本。也就是说,GPS-SSL引入了一种全新的轴研究,并改进了与数据增强和损失设计相辅相成的SSL。事实上,我们观察到,尽管GPS-SSL在我们的实验中达到了或超过了SSL的性能,但在不知道最佳数据增强的情况下,性能差距更大。现有的视觉文本对比学习,如CLIP(Radford等,2021年),旨在匹配图像和描述的配对嵌入,同时将其他内容推开,这提高了表示的可转移性并支持零次预测。

2024-01-15 11:42:01 918 1

原创 研一第十七周论文阅读情况

利用3D打印材料本身的挠曲特性,我们设计了一种类似跷跷板的机械结构,能够将一侧的大位移转换为另一侧的小位移(降低到9.1%),从而实现约5𝜇m的聚焦精度,这比3D打印本身的加工精度高40倍。对于问题的制定,我们提出了一个轮廓演化模型的非独立和同分布(非IID)噪声跨像素在每个客户端,然后将其扩展到多源数据的情况下,形成一个异构的噪声模型(跨客户端的非IID注释噪声)。然而,由于客户端之间的样本不平衡以及来自不同器官的大数据异质性,可变的分割任务和多样化的分布,它仍然是一项具有巨大挑战的任务。

2023-12-22 12:00:09 1039 4

原创 研一第十六周论文阅读情况

这相当于删除所有拓扑在保持拓扑关键性的同时,等效区域两个图像具有不同的外观同时具有与原始拓扑结构相同的拓扑结构形象将提出的DSPIF应用于相互监督的网络,可以减少其错误共识。密集的实验表明,我们的方法显着优于监督基线和国家的最先进的SSL方法的前1名的分类准确率为87.56%。解决标记数据稀缺的问题数字病理图像中的不平衡数据集问题,我们的工作已经表明通过在SSL阶段利用附近的补丁作为阳性样本,提出的方法可以具有更鲁棒的表示,并在下游任务。在未来的工作中,我们的目标是将我们的方法扩展到其他医学成像领域。

2023-12-19 09:50:47 969 1

原创 It2CLR模型复现情况

1、一开始打算使用byyp包从百度网盘中进行下载,但是在bypy info阶段绑定的账号没有足够的空间在存储Camelyon16数据集,换账号重新绑定bypy包失败,所以更换方法;1)XXX.txt数据集:该数据集记录的camelyon16中每一张图片;2)all_patches.csv数据集:该数据集记录的是。2、代码中dataset部分共有两个数据集。第三步:使用tmux新建会话进行后台下载。1、CAMELYON16 数据集。第二步:编写爬虫程序。

2023-12-10 21:17:53 473 9

原创 研一第十五周论文阅读情况

流行的联合 SSL 范式。其次,由于wsi可以产生大的或不平衡的包,阻碍了MIL模型的训练,我们建议使用自监督对比学习来提取良好的MIL表示,并缓解大包的内存成本过高的问题。具体来说,在本文中,我们提出通过稳定的基于网格的匹配来学习全局和局部优化,将预训练的PEAC模型转移到不同的下游任务中,并广泛地证明了(1)PEAC比现有的最先进的完全/自监督方法实现了更好的性能,以及(2)PEAC捕获跨同一患者的视图以及跨不同性别、体重和健康状态的患者的解剖结构一致性,这增强了我们用于医学图像分析的方法的可解释性。

2023-12-10 21:16:19 399 1

原创 研一第十三周论文阅读情况

此外,仅在合成数据上训练的模型接近在真实数据上训练的模型的性能。在这项工作中,我们提出了UR-SAM,这是一个用于自动提示医学图像分割的不确定性校正SAM框架,它利用生成边界框提示的提示增强来进行不确定性评估,并利用估计的不确定性来纠正分割结果以提高准确性。在两个涵盖35个器官分割的公共3D医学数据集上进行的大量实验表明,无需补充训练或微调,我们的方法在不进行手动提示的情况下进一步提高了分割性能,最多提高了10.7%和13.8%的Dice相似系数,证明了其在医学图像分割中的效率和广泛能力。

2023-11-21 20:22:12 475

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除