给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
//抄的
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
deque<int> dq;
vector<int> res;
for (int i = 0; i < nums.size(); i++) {
while (!dq.empty() && nums[i] >= nums[dq.back()]) {
dq.pop_back();
}
dq.push_back(i);
while (!dq.empty() && dq.front() <= i - k) {
dq.pop_front();
}
if (i >= k - 1) {
res.push_back(nums[dq.front()]);
}
}
return res;
}
};
采用deque队列作为数据结构,因为可以O(1)操作头尾两端。
主要逻辑是维持一个单调队列。遍历一遍nums:当值大于队尾值时,循环移除队尾值,直至可以保持单调递减,目的在于,去除小于新进来的数的数,因为后面肯定用不上了;检查队首值索引是否已经超出范围,如果超出范围,自然没必要保留(因为严格按入队时间排序,检查队首足够);当索引足够,输出窗口内最大值。
逻辑核心在于,利用deque对两端的快速操作,通过单调队列排除了不可能成为最大值的值,从而可以快速获取窗口内最大值(O(1) 获取最值,总体为O(n))。
如果按常规逻辑,获取窗口内最大值,需要O(k)遍历一遍,显然是不够效率的。可以尝试维持一个max值,但如果max值出队,无法得到下一个max值,信息丢失了。通过单调队列,解决的就是这个问题,留存了所有有效信息的同时,可以快速获取max值。