给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。
//ai提示写的
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.empty()) return 0;
int dp = nums[0];
int maxn=nums[0];
for(int i=1;i<nums.size();i++)
{
dp=(max(nums[i],dp+nums[i]));
maxn=max(maxn,dp);
}
return maxn;
}
};
动态规划逻辑。
思考中最大的难点在于,如果用dp保存前面数组中具有最大和的子数组,不能顺利推进递推关系。
正确做法是,通过dp存储以num[i]结尾的最大序列值,通过maxn存储遍历过程中最大序列值。这样,就有了dp=(max(nums[i],dp+nums[i]))的递推关系,由于dp不总是所求值,即最大和的连续子数组不总是以nums[i]收尾,所以维护一个maxn值进行记录。
补充理解:由于具有最大和的连续子数组总归会以一个数结尾,即为一个dp,所以不会出现遗漏。
补充理解:如果前面的累计值小于 0 了,那么就没有意义了
//ai写的
class Solution {
public:
int maxSubArray(std::vector<int>& nums) {
return divideAndConquer(nums, 0, nums.size() - 1);
}
private:
// 分治递归函数
int divideAndConquer(std::vector<int>& nums, int left, int right) {
if (left == right) {
return nums[left]; // 基本情况:子数组只有一个元素
}
int mid = left + (right - left) / 2; // 防止溢出
// 递归求左右半部分的最大子数组和
int leftMax = divideAndConquer(nums, left, mid);
int rightMax = divideAndConquer(nums, mid + 1, right);
// 计算跨越中点的最大子数组和
int crossMax = maxCrossingSum(nums, left, mid, right);
// 返回三者中的最大值
return std::max({leftMax, rightMax, crossMax});
}
// 计算跨越中点的最大子数组和
int maxCrossingSum(std::vector<int>& nums, int left, int mid, int right) {
// 向左扩展(从中点到左边界)
int leftSum = INT_MIN;
int tempSum = 0;
for (int i = mid; i >= left; i--) {
tempSum += nums[i];
leftSum = std::max(leftSum, tempSum);
}
// 向右扩展(从中点+1到右边界)
int rightSum = INT_MIN;
tempSum = 0;
for (int i = mid + 1; i <= right; i++) {
tempSum += nums[i];
rightSum = std::max(rightSum, tempSum);
}
return leftSum + rightSum; // 跨越中点的和
}
};
分治法,比官解清晰点。
并不比dp优秀,只是展示一下分治法的逻辑。
求解时,分别计算左边、右边、跨越两边数组,这三个的最大值,最后再取最大值。
思路很简单,主要是逻辑的实现,求解跨越两边的数组时,直接遍历到头,没有什么特别的。