
自监督强化学习【SSL-RL】
文章平均质量分 97
本专栏介绍自监督强化学习
不去幼儿园
我们终其一生寻找的,应该是自己喜欢的生活,和想成为的人!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【SSL-RL】增强Curiosity-driven Exploration (CDE)算法的探索能力
为了进一步提升Curiosity-driven Exploration (CDE)算法在强化学习任务中的性能,可以考虑通过以下几个方面的改进来优化智能体的探索行为和效率.原创 2024-11-18 08:00:00 · 9377 阅读 · 217 评论 -
【SSL-RL】自监督强化学习:自预测表征 (SPR)算法
自预测表征,Self-Predictive Representations (SPR)算法 是一种用于自监督强化学习的算法,旨在通过学习预测未来的潜在状态来帮助智能体构建有用的状态表示。SPR在强化学习任务中无需依赖稀疏或外部奖励,通过自监督学习的方法获得环境的潜在结构和动态信息。这种方法特别适合高维观测环境(如图像)或部分可观测的任务。原创 2024-11-13 08:00:00 · 5962 阅读 · 209 评论 -
【SSL-RL】自监督强化学习: 好奇心驱动探索 (CDE)算法
好奇心驱动探索,Curiosity-driven Exploration (CDE)算法是一种用于自监督强化学习的算法,旨在通过激发智能体的“好奇心”来引导其探索未知环境。好奇心驱动的探索机制主要基于智能体对环境的预测误差:当智能体遇到无法准确预测的情境时,会将其视为一个具有“新奇性”的事件,从而被激励去探索该区域。CDE适用于稀疏奖励或无奖励的环境,通过自监督的方式增强智能体的探索能力,使其能够自主地发现和学习新的环境结构和行为模式。原创 2024-11-15 08:00:00 · 5571 阅读 · 220 评论 -
【SSL-RL】自监督强化学习:随机潜在演员评论家 (SLAC)算法
随机潜在演员评论家,Stochastic Latent Actor-Critic (SLAC)算法 是一种用于连续控制任务的自监督强化学习算法,由Google Brain提出。SLAC结合了自监督学习和深度强化学习,通过构建一个隐变量模型(Latent Variable Model)来捕捉环境的潜在状态,并使用这些状态来进行策略优化。SLAC特别适合于高维观测(如图像)和部分可观测的环境。SLAC算法的主要目标是通过学习潜在空间的动态来更好地估计环境状态,进而提升智能体的策略学习效率。原创 2024-11-11 08:00:00 · 5638 阅读 · 213 评论 -
【SSL-RL】自监督强化学习:引导式潜在预测表征 (BLR)算法
引导式潜在预测表征,Bootstrap Latent-predictive Representations (BLR) 是一种创新的自监督学习方法,用于从高维观测中提取潜在的、能够进行预测的状态表示。这种方法特别适用于强化学习场景,在稀疏奖励和无奖励的环境下,BLR通过构建一种自我引导的表示学习机制,使得智能体能够从环境观测中提取有用的潜在表示。BLR主要通过自Bootstrap Latent-predictive Representations监督目标训练模型,以预测未来的潜在状态,从而使得智能体可以原创 2024-11-09 08:00:00 · 5108 阅读 · 177 评论 -
【SSL-RL】自监督强化学习:解耦表示学习 (DRL)算法
解耦表示学习,Decoupled Representation Learning (DRL) 是一种用于在自监督强化学习(Self-Supervised Reinforcement Learning, SSRL)中学习解耦表示的算法。DRL旨在通过将表示学习和策略学习过程分离,以实现更高效的学习。该算法适用于许多强化学习场景,特别是在高维观测(如图像、视频等)中,有效提取低维、独立的状态表示,帮助智能体更好地理解环境并进行决策。原创 2024-11-07 08:00:00 · 3252 阅读 · 196 评论 -
【SSL-RL】自监督强化学习:事后经验回放 (HER)算法
事后经验回放,Hindsight Experience Replay (HER) 是一种在稀疏奖励强化学习环境下提高智能体学习效率的策略。稀疏奖励问题是指智能体在多数状态下无法获得有价值的反馈,因为奖励信号极其稀少或完全没有。HER通过回顾智能体过去未能实现的目标,将这些“失败”的经验转换为有价值的学习机会,从而极大地提高了智能体在稀疏奖励场景中的学习效率。原创 2024-10-24 08:00:00 · 5518 阅读 · 223 评论 -
【SSL-RL】自监督强化学习:对比预测编码(CPC)算法
Contrastive Predictive Coding (CPC) 是一种用于学习有效表示的自监督学习方法,它可以用于强化学习环境中来帮助智能体学习有用的状态表示。CPC主要通过对序列数据进行建模,并通过对比学习(Contrastive Learning)来提取全局特征。CPC的核心思想是最大化当前观察和未来潜在特征的互信息,进而学习到有用的表征。CPC算法由DeepMind提出,它的主要目的是减少无监督学习中对标签的依赖,同时最大化局部信息和全局特征之间的关联。原创 2024-10-30 08:00:00 · 2401 阅读 · 217 评论 -
【SSL-RL】自监督强化学习:Plan2Explore算法
Plan2Explore是自监督强化学习中的一项创新算法,旨在解决探索问题,尤其是在没有外部奖励信号或奖励稀疏的情境下,如何让智能体有效探索环境。Plan2Explore通过自监督的方式来提高智能体对环境的探索能力,不依赖外部奖励。原创 2024-11-01 08:00:00 · 4435 阅读 · 219 评论 -
【SSL-RL】自监督强化学习:随机网络蒸馏(RND)方法
随机网络蒸馏(RND)是一种自监督学习方法,旨在提高强化学习中的探索效率。该算法由 Chesney et al. 在论文《Random Network Distillation as a Method for Intrinsic Motivation》提出,RND 利用随机神经网络的输出与环境状态的真实特征之间的差异来生成内在奖励,鼓励智能体探索未见过的状态。这种方法尤其适用于外部奖励稀疏的环境。原创 2024-11-04 08:00:00 · 3266 阅读 · 228 评论 -
【SSL-RL】基于好奇心驱动的自监督探索机制(ICM算法)
Intrinsic Curiosity Module (ICM) 是一种用于强化学习的内在奖励机制,旨在解决传统强化学习中在稀疏奖励场景下,智能体难以学习有效策略的问题。该算法由 Deepak Pathak 等人在论文《Curiosity-driven Exploration by Self-supervised Prediction》中提出。ICM 是通过引入“好奇心”作为一种内在动机,帮助智能体在缺乏外部奖励的情况下探索环境并获取经验,从而提高强化学习的效率。原创 2024-10-26 08:00:00 · 7099 阅读 · 212 评论 -
【RL Latest Tech】自监督强化学习(SSL-RL):理论与方法
自监督强化学习(Self-Supervised Reinforcement Learning,SSL-RL)是一种通过让智能体在没有明确外部奖励信号的情况下,自主地从环境中学习表示和特征的强化学习方法。其核心思想是智能体通过自主生成目标或利用环境中的潜在结构,学习到有用的特征,以便在以后更高效地处理任务。自监督强化学习的核心优势在于能够提高样本效率,减少对外部奖励信号的依赖,并促使智能体在丰富的环境中自主发现新的策略和行为。原创 2024-10-22 08:00:00 · 5915 阅读 · 232 评论