数据集 mean std计算方法

本文展示了如何使用OpenCV(cv2)对VOC2007数据集中的图像进行预处理,包括读取、缩放、归一化,并计算BGR通道的像素均值和标准差,以便后续深度学习模型使用。
import numpy as np
import cv2
import os
 
# img_h, img_w = 32, 32
img_h, img_w = 32, 48   #根据自己数据集适当调整,影响不大
means, stdevs = [], []
img_list = []
 
imgs_path = './VOCdevkit/VOC2007/JPEGImages/'
imgs_path_list = os.listdir(imgs_path)
 
len_ = len(imgs_path_list)
i = 0
for item in imgs_path_list:
    img = cv2.imread(os.path.join(imgs_path,item))
    img = cv2.resize(img,(img_w,img_h))
    img = img[:, :, :, np.newaxis]
    img_list.append(img)
    i += 1
    print(i,'/',len_)    
 
imgs = np.concatenate(img_list, axis=3)
imgs = imgs.astype(np.float32) / 255.
 
for i in range(3):
    pixels = imgs[:, :, i, :].ravel()  # 拉成一行
    means.append(np.mean(pixels))
    stdevs.append(np.std(pixels))
 
# BGR --> RGB , CV读取的需要转换,PIL读取的不用转换
means.reverse()
stdevs.reverse()
 
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值