- 博客(5)
- 收藏
- 关注
原创 复现ROP
本文在windows系统下,笔记本RTX4060来复现网络,默认从一个完全干净的虚拟环境中构造。本次选用了一个比较稳定的版本cu11.3+torch1.10的组合,大家有自己习惯的版本也可以。使用tensorboard实时查看训练,重新打开一个终端,到环境中运行。配置pytorch,我一般习惯直接下载软件包到本地然后用pip下载。训练模型都保存在目标文件中。卸掉重新装一个稳定的版本。创建环境ROP并激活。
2025-04-17 21:12:46
767
原创 点云数据增强(hdf5)
HDF5 格式优势:结构化与层次化存储、读写高效、支持多类型数据和大规模数据的随机访问,便于构建深度学习数据管道。劣势:二进制格式不便人工调试,文件预处理要求较高,需要提前设计好数据结构。应用:作为大规模训练集、验证集的最终存储格式,适合深度学习训练数据的快速加载与预处理。OFF 格式优势:简单、纯文本、易于手工查看和初步调试,适合描述简单的网格几何。劣势:扩展性较差,数据量大时效率较低,通常需转换格式才能直接用于深度学习。应用。
2025-04-15 20:33:12
744
原创 TensorBoard可视化训练信息
但是,在大多数时候,我们连接的远程服务器并不能支持浏览器功能,这样我们就无法直接在远程服务器中查看tensorboard的运行情况。,我们可以通过tensorboard更加便捷地实时观测到网络在训练过程中的。等的变化曲线,这也方便了我们随时进行网络优化以及训练策略的调整。在服务器下运行tensorboard,在本地浏览器下查看,是深度学习中常用的一种。
2025-04-10 18:18:03
156
原创 复现DCP
小白刚接触视觉方向,跑深度学习代码,初期遇到很多问题,主要写给自己看,有大神指点更是不甚感激。关于网络的原理和代码详解网上都有详细介绍,本文主要介绍利用服务器(linnux系统),来进行DCP的复现。服务器的搭载和环境配置如下:AutoDL算力云租用V100(注意,租用不可以用40系的GPU,我一开始考虑到服务器的成本,选择了使用自己的电脑跑(4060)会显示架构的问题,由于网络用到的pytorch版本比较低。CUDA 10.2。
2025-04-08 17:46:45
1437
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人