一、安装ubuntu系统(戴尔G3 3590)
参考学习视频:机器人工匠阿杰
这个视频讲解很全面,以其为主要学习资料完成系统的安装
1.1 制作系统盘
链接:https://pan.baidu.com/s/1ZNXBEkrbELVI0wjlT3Cbpw?pwd=6666
提取码:6666
这是18.04的系统镜像,也可以去网上搜集别的版本的,下载好之后制作系统盘(看参考学习视频里的P4)。
1.2 准备磁盘分区
这一部分看参考学习视频里的P5和P6
1.3 进入bios模式需要改进的设置(开机之后一直按着F12)
- 硬盘读取模式改为AHCI:看这个链接的2.3部分
- 选择secure Boot Enable改成Disabled关闭安全启动:看这个链接的2.4部分
1.4 检查boot sequence
这一步,笔记本应当关机,插入系统盘,进入bios模式,检查boot sequence的顺序,最好如下图所示。>
确定好了之后,检查ubuntu的boot Option,看是否为grubx64.efi。
如果不是的话,选择add Boot Option
进行这样的设置,不然安装好之后无法进入系统引导界面,主要要选择一下FS的序号,找有grubx64.efi的文件。设定好之后,再设置到第一排序,如果找不到的话,可以等安装完系统再次进入bios系统中寻找。
注意:1.4是戴尔出现的专有问题。
1.5 开始安装
安装的过程参考学习视频中的P7或者P8
二、系统的一些基础设置
(1)尽量在系统初始设置的时候选择中文模式,不然后期安装中文输入法还得输入好几天指令,做一些设置,比较繁琐,不如一步到位。
如果想将终端显示设置为英文可以输入如下指令。
先查看一下当前的支持语言
echo $LANG
切换命令
LANG=en_US
(2)ubuntu和windows系统时间同步设置参考学习视频P9
(3)换源:https://zhuanlan.zhihu.com/p/61228593。我推荐选择阿里云的,清华的换了一直报错。
三、显卡驱动安装
3.1 先禁用nouveau
sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
在终端依次输入这三个指令,将nouveau加入黑名单。
然后再运行下面命令进行更新
sudo update-initramfs -u
重启系统
sudo reboot
查询是否禁用(若什么也不显示,则说明禁用成功)
lsmod | grep nouveau
3.2 安装gcc/cmake
sudo apt-get install build-essential
sudo apt-get install cmake
检查是否安装成功:
gcc --version
cmake --version
有版本号显示说明安装成功
3.3 安装Nvidia驱动
ubuntu-drivers devices,查看该版本下系统推荐的显卡驱动版本,找到recommended的那个版本,安装这个版本或者以下的,因为显卡驱动可以向下兼容。
进入英伟达官网:https://www.nvidia.cn/Download/index.aspx?lang=cn
注意在这个过程中,可以调节蓝框中的参数,搜索之后找到图3.1中推荐的版本型号即可,蓝框中的版本型号并不一定需要和自身电脑笔记本的显卡型号匹配,因为这个显卡驱动向下兼容,查显卡驱动是为了查看显卡所能支持的最高版本型号。
接下来就是安装下载好的驱动。首先,你要确认自己的Ubuntu系统里没有安装别的NVIDIA显卡驱动,若此前安装过其它版本的驱动,那么首先将其卸载掉:
sudo apt-get remove nvidia-*
然后赋予刚刚下载好的驱动run文件以执行权限:
sudo chmod +x NVIDIA-Linux-x86_64-470.82.00.run(可以灵活利用tab键)
接下来在run文件目录下运行它:
sudo ./NVIDIA-Linux-x86_64-470.82.00.run(可以灵活利用tab键)
安装完成之后,输入nvidia-smi查询是否安装成功即可。
四、安装cuda和cudnn
cuda和cudnn是由版本需求匹配的,这个要注意,笔者会根据pytorch官网中的指令设计标准的版本匹配表格说明,确保每一种搭配都有对应指令可以满足。https://pytorch.org/get-started/previous-versions/
4.1 安装cuda(这里以11.1为例)
4.1.1 在NVIDIA官网选择与系统相对应的版本
https://developer.nvidia.com/cuda-toolkit-archive
不要在终端运行蓝色框那一行的指令,在ubuntu复制网址,打开网页,单独下载cuda11.1,下载之后,在其所在文件夹下打开再运行第二行的指令。
选择continue,输入accept,下一步要注意!!!~~~
因为显卡驱动已经安装了,所以要取消安装,在白色横条所在处,按一下enter,去掉叉叉,下一行也是,最后再移步到Install一行,选择enter进行安装。
4.1.2 配置环境变量
打开文件
gedit ~/.bashrc
在文件末尾加上下面两行
export PATH=/usr/local/cuda-11.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
黄色部分的路径最好在系统里类比找一下,这个路径要核对正确,因为每个版本都是不一样的。
更新环境变量配置
source ~/.bashrc
4.1.3 验证是否安装成功
终端输入如下命令
nvcc -V
出现如下信息则说明安装成功
4.2 安装cudnn(以8.0.5为例)
https://blog.csdn.net/qq_42167046/article/details/113246994
到官网下载,需要先注册一个账号再打开链接才能下载。
https://developer.nvidia.com/rdp/cudnn-download
这个需要和cuda进行匹配
上传所有文件到服务器,然后解压cudnn-11.0-linux-x64-v8.0.5.39.tgz;
tar -xzvf cudnn-11.0-linux-x64-v8.0.5.39.tgz(注意版本)
将cuda/include/cudnn.h文件复制到usr/local/cuda/include文件夹,将cuda/lib64/下所有文件复制到/usr/local/cuda/lib64文件夹中,并添加读取权限。
分别输入以下两个命令(注意:下面的所有命令都要在cuda的父目录输入,就是上图所示的目录)
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
然后更改权限
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
接下来安装Deb包,
cuDNN Runtime Library for Ubuntu18.04(Deb)
cuDNN Developer Library for Ubuntu18.04(Deb)
cuDNN Code Samples and User Guide for Ubuntu18.04(Deb)
分别输入以下命令,如果你安装的是别的版本需要修改一下文件名。
sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.0_amd64.deb
然后测试是否安装成功,分别输入以下四个命令:
cp -r /usr/src/cudnn_samples_v8/ ~
cd ~/cudnn_samples_v8/mnistCUDNN/
make clean && make
./mnistCUDNN
最后出现**Test passed!**说明成功了。
五、安装anaconda
https://blog.csdn.net/thy0000/article/details/122878599
https://blog.csdn.net/qq_44849860/article/details/100031331
https://blog.csdn.net/g944468183/article/details/123682858
安装之后anaconda没有快捷方式,所以需要配置桌面快捷方式
切换路径
cd /usr/share/applications/
编辑快捷方式文档
sudo gedit Anaconda.desktop
编辑文档并添加如下代码(Exec和Icon后面是自己的路径)
Exec=*****这句是你的anaconda-navigator文件的路径;
Icon=****这句是你的图标文件anaconda-icon-256x256.png的路径;
[Desktop Entry]
Version=1.0
Name=Anaconda
Type=Application
GenericName=Anaconda
Comment=Scientific Python Development Environment - Python3
Exec=/home/xdzhao/anaconda3/bin/anaconda-navigator
Categories=Development;Science;IDE;Qt;Education;
Icon=/home/xdzhao/anaconda3/lib/python3.7/site-packages/anaconda_navigator/static/images/anaconda-icon-256x256.png
Terminal=false
StartupNotify=true
MimeType=text/x-python;
六、安装pycharm
https://www.jetbrains.com/pycharm/download/#section=linux
下载后解压(文件在下载目录下)
tar -zxvf FileName.tar.gz
但出于统一管理安装软件的考虑,可以将软件移动到opt目录下(opt文件夹可以用来存放下载的文件),在终端输入
sudo mv FileName/ /opt/
文件夹移动之后就可以启动软件进行使用了,首先在终端进入pycharm的bin文件夹
cd /opt/FileName/bin
然后启动pycharm
./pycharm.sh
紧接着就可以看到Pycharm的启动界面。
在初始界面的设置里添加桌面快捷方式
在启动页面点击Configure,选中Create Desktop Entry,并在弹出的对话框中勾选for all users即可生成快捷方式。
七、 一些其他的tips
7.1 ubuntu换源
https://zhuanlan.zhihu.com/p/61228593
7.2 ubuntu和windows时间匹配
参考学习视频:机器人工匠阿杰 P9
7.3 pip换源
1、创建pip.conf文件
cd ~/.pip
如果提示目录不存在的话,我们要自行创建一个,再进入目录
mkdir ~/.pip
cd ~/.pip
在.pip目录下创建一个pip.conf文件
touch pip.conf
文件就创建好了(当然如果你已经有这个文件了这步可以跳过).
2、编辑pip.conf文件
sudo gedit ~/.pip/pip.conf
打开pip.conf文件窗口,将以下内容复制到文件中:
[global]
index-url = http://pypi.douban.com/simple
[install]
trusted-host=pypi.douban.com
7.4 conda创建新环境慢
在terminal输入
gedit ~/.condarc
打开了这个文件,复制下面的代码进去
channels:
\- defaults
show_channel_urls: true
default_channels:
\- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
\- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
\- https://mirrors.bfsu.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.bfsu.edu.cn/anaconda/cloud
msys2: https://mirrors.bfsu.edu.cn/anaconda/cloud
bioconda: https://mirrors.bfsu.edu.cn/anaconda/cloud
menpo: https://mirrors.bfsu.edu.cn/anaconda/cloud
pytorch: https://mirrors.bfsu.edu.cn/anaconda/cloud
simpleitk: https://mirrors.bfsu.edu.cn/anaconda/cloud