异构图神经网络——Heterogeneous Graph Neural Networks

本文介绍了异构图神经网络(Heterogeneous Graph Neural Networks),对比了同构图的GNN和Graph Attention Network,探讨了异构图的概念及其在推荐系统中的应用,特别是淘宝意图推荐。文章还详细阐述了如何利用meta-path进行特征重构和节点特征聚合,并讨论了link prediction任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关代码见文末

代码详解:异构图神经网络代码详解与实战-CSDN博客

1.回顾同构图

1.1 GNN

GNN基本计算方法——邻接矩阵乘以节点,聚合相邻节点的特征,得到本节点的特征表达

1.2 Graph Attention Network

         引入图注意力,实现边的权重可学习,最简单的方法是,将两个节点的特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值