因果推断与机器学习—因果推断入门(1)

        在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主 Yoshua Bengio 在对系统 2(system 2,这个说法来自心理学家 Daniel Kahneman 的作品,人类大脑由两套系统构成:系统 1 负责快速思考,做出下意识的反应;系统 2 则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现强人工智能的过程中,我们必须在设计机器学习算法的时候使它们拥有意识到因果关系的能力。

一、 定义因果关系的两种基本框架        

        若要更好地理解定义 1.1,需要知道因果关系是用来描述数据生成过程(data generating process,DGP)的。我们说 X 是 Y 的因,就是在说 X 是影响 Y 的生成过程的一个因素。如果改变了 X 的值,再用新的 X 来生成一次 Y,那么 Y 的值就会改变。

        举个例子,我们知道对一家餐厅的评价会影响它的销量。如果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值