图形方法
-
直方图和概率密度图:
通过绘制数据的直方图和概率密度图,可以直观地判断数据是否近似正态分布。如果数据的直方图呈现出钟形曲线,并且与标准正态分布的概率密度图(如高斯曲线)相匹配,则数据可能服从正态分布。 -
Q-Q 图(Quantile-Quantile Plot):
Q-Q 图是数据的分位数与理论正态分布的分位数进行比较的图形。如果数据服从正态分布,Q-Q 图上的点应大致形成一条直线。如果点偏离直线,则数据不服从正态分布。
统计检验方法
-
Shapiro-Wilk 检验:
Shapiro-Wilk 检验是一种适用于小样本量(通常 n < 5000)的正态性检验方法。其原假设(H0)是数据服从正态分布,如果 p 值小于显著性水平(通常为 0.05),则拒绝原假设,认为数据不服从正态分布。 -
Kolmogorov-Smirnov 检验:
Kolmogorov-Smirnov 检验(K-S 检验)是一种适用于大样本量的正态性检验方法。它比较数据的经验分布函数与理论正态分布函数之间的差异。如果 p 值小于显著性水平,则拒绝原假设,认为数据不服从正态分布。 -
Anderson-Darling 检验:
Anderson-Darling 检验也是一种正态性检验方法,它特别关注分布的尾部。其计算比 K-S 检验更复杂,但适用于更广泛的数据集。如果检验统计量大于临界值,则拒绝原假设,认为数据不服从正态分布。 -
D’Agostino-Pearson 检验:
D’Agostino-Pearson 检验综合了数据的偏度和峰度,计算一个综合统计量。如果 p 值小于显著性水平,则拒绝原假设,认为数据不服从正态分布。