数据正态分布的检验方法简述

图形方法

  1. 直方图和概率密度图

    通过绘制数据的直方图和概率密度图,可以直观地判断数据是否近似正态分布。如果数据的直方图呈现出钟形曲线,并且与标准正态分布的概率密度图(如高斯曲线)相匹配,则数据可能服从正态分布。
  2. Q-Q 图(Quantile-Quantile Plot)

    Q-Q 图是数据的分位数与理论正态分布的分位数进行比较的图形。如果数据服从正态分布,Q-Q 图上的点应大致形成一条直线。如果点偏离直线,则数据不服从正态分布。

统计检验方法

  1. Shapiro-Wilk 检验

    Shapiro-Wilk 检验是一种适用于小样本量(通常 n < 5000)的正态性检验方法。其原假设(H0)是数据服从正态分布,如果 p 值小于显著性水平(通常为 0.05),则拒绝原假设,认为数据不服从正态分布。
  2. Kolmogorov-Smirnov 检验

    Kolmogorov-Smirnov 检验(K-S 检验)是一种适用于大样本量的正态性检验方法。它比较数据的经验分布函数与理论正态分布函数之间的差异。如果 p 值小于显著性水平,则拒绝原假设,认为数据不服从正态分布。
  3. Anderson-Darling 检验

    Anderson-Darling 检验也是一种正态性检验方法,它特别关注分布的尾部。其计算比 K-S 检验更复杂,但适用于更广泛的数据集。如果检验统计量大于临界值,则拒绝原假设,认为数据不服从正态分布。
  4. D’Agostino-Pearson 检验

    D’Agostino-Pearson 检验综合了数据的偏度和峰度,计算一个综合统计量。如果 p 值小于显著性水平,则拒绝原假设,认为数据不服从正态分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值