数据结构之一:求最大子列和的算法

本文介绍了四种解决最大子列和问题的算法:暴力搜索、优化版双层循环、二分法优化和在线处理。从O(n^3)到O(n),逐步提升了效率,适用于编程竞赛或高效数据分析场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:给定K个整数组成的序列{ N​1​​, N​2​​, …, N​K​​ },“连续子列”被定义为{ N​i​​, N​i+1​​, …, N​j​​ },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。

**算法一:**粗暴的按顺序找,时间复杂度O(n^3),不推荐

//A为整数数组,n为数组个数
int Max1(int A[], int n)
{
	int i, j, k;
	int Thissum , Maxsum = 0;
	for (i = 0; i < n; i++)//i表示左边界
	{
		for (j = i; j < n; j++)//j表示右边界
		{
			Thissum = 0;
			for (k = i; k <= j; k++)//从i到j寻找
			{
				Thissum += A[k];
				if (Thissum > Maxsum)
					Maxsum = Thissum;
			}
		}
	}
	return Maxsum;
}

**算法二:**从算法一优化而来,去掉第三个循环,利用第二个循环直接寻找最大子列。时间复杂度为O(n^2),有较大改进。

//A为整数数组,n为数组个数
int Max2(int A[], int n)
{
	int i, j;
	int Thissum, Maxsum = 0;
	for (i = 0; i < n; i++)//i表示左边界
	{
		Thissum = 0;
		for (j = i; j < n; j++)//j表示右边界
		{
			
			Thissum += A[j];
			if (Thissum > Maxsum)
				Maxsum = Thissum;
		}
	}
	return Maxsum;
}

**算法三:**既然时间复杂度为O(n^2),就尽量想办法将其改为O(nlogn),这能使算法优化很多,而且一般能做到。
基本思想是用二分法
在这里插入图片描述最后分到分到最后,Left=Right,结束,然后从分点往两边查找最大值

//算法三分而治之,时间复杂度nlogn
int Max3(int A[],int L,int R)
{
	//直接使用每个数组的下标,求中间值时加一
	int sumL=0, sumR=0;//左边,右边的最大值
	int Thissum = 0, Maxsum=0,RMaxsum=0;//本次的值,本次最大值,合并后的真正最大值
	while (R!=L)//当左边等于右边时退出循环
	{
		int N = R + L+1;
		int M = N / 2;
		sumL=Max3(A,L,M-1);
		sumR=Max3(A,M,R);
		for (int i = M; i <=R ; i++)
		{
			//先从中间值开始往左加(外循环)
			Thissum += A[i] ;
			int num = Thissum;
			if (Thissum > Maxsum)
				Maxsum = Thissum;
			//
			for (int j = M-1; j >= L; j--)
			{
				//先从中间值开始往右加(内循环)
				Thissum += A[j];
				if (Thissum > Maxsum)
					Maxsum = Thissum;
			}
			Thissum = num;//比较完后仍回到左边本来相加的值上
		}
		//比较,左值,右值,合并后值,的大小
		if (sumL > sumR)
			RMaxsum = sumL;
		else
			RMaxsum = sumR;
		if (Maxsum > RMaxsum)
			RMaxsum = Maxsum;
		return RMaxsum;
	}
	return A[L];
}

**算法四:**在线处理,最优,时间复杂度为O(n)。
它是从第一个元素开始往后相加,如果大于最大值则保留并替换最大值,如果小于则令此时的加和等于,因为再往后加,它已经不能使总和变大,如此只需对数组遍历一遍。

//算法四,在线处理,时间复杂度n
int Max4(int A[], int n)
{
	int Thisnum = 0, Maxnum = 0;
	for (int i = 0; i < n; i++)
	{
		Thisnum += A[i];
		if (Thisnum > Maxnum)
			Maxnum = Thisnum;
		else
			if (Thisnum < 0)
				Thisnum = 0;
	}
	return Maxnum;
}

欢迎大佬指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

s_persist

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值