支持向量机练习

练习5:支持向量机


介绍

在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。

在开始练习前,需要下载如下的文件进行数据上传

  • data.tgz -包含本练习中所需要用的数据文件

其中:

  • ex5data1.mat -数据集示例1
  • ex5data2.mat -数据集示例2
  • ex5data3.mat -数据集示例 3
  • spamTrain.mat -垃圾邮件训练集
  • spamTest.mat -垃圾邮件测试集
  • emailSample1.txt -电子邮件示例1
  • emailSample2.txt -电子邮件示例2
  • spamSample1.txt -垃圾邮件示例1
  • spamSample2.txt -垃圾邮件示例2
  • vocab.txt -词汇表

在整个练习中,涉及如下的必做作业,及标号*选做作业

1 支持向量机

我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。

1.1 数据集示例1

我们要做的第一件事是看一个简单的二维数据集,看看线性SVM如何对数据集进行不同的C值(类似于线性/逻辑回归中的正则化项)。

!tar -zxvf /home/jovyan/work/data.tgz
data/
data/emailSample1.txt
data/emailSample2.txt
data/ex5data1.mat
data/ex5data2.mat
data/ex5data3.mat
data/spamSample1.txt
data/spamSample2.txt
data/spamTest.mat
data/spamTrain.mat
data/vocab.txt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import loadmat

raw_data = loadmat('/home/jovyan/data/ex5data1.mat')
raw_data
{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Nov 13 14:28:43 2011',
 '__version__': '1.0',
 '__globals__': [],
 'X': array([[1.9643  , 4.5957  ],
        [2.2753  , 3.8589  ],
        [2.9781  , 4.5651  ],
        [2.932   , 3.5519  ],
        [3.5772  , 2.856   ],
        [4.015   , 3.1937  ],
        [3.3814  , 3.4291  ],
        [3.9113  , 4.1761  ],
        [2.7822  , 4.0431  ],
        [2.5518  , 4.6162  ],
        [3.3698  , 3.9101  ],
        [3.1048  , 3.0709  ],
        [1.9182  , 4.0534  ],
        [2.2638  , 4.3706  ],
        [2.6555  , 3.5008  ],
        [3.1855  , 4.2888  ],
        [3.6579  , 3.8692  ],
        [3.9113  , 3.4291  ],
        [3.6002  , 3.1221  ],
        [3.0357  , 3.3165  ],
        [1.5841  , 3.3575  ],
        [2.0103  , 3.2039  ],
        [1.9527  , 2.7843  ],
        [2.2753  , 2.7127  ],
        [2.3099  , 2.9584  ],
        [2.8283  , 2.6309  ],
        [3.0473  , 2.2931  ],
        [2.4827  , 2.0373  ],
        [2.5057  , 2.3853  ],
        [1.8721  , 2.0577  ],
        [2.0103  , 2.3546  ],
        [1.2269  , 2.3239  ],
        [1.8951  , 2.9174  ],
        [1.561   , 3.0709  ],
        [1.5495  , 2.6923  ],
        [1.6878  , 2.4057  ],
        [1.4919  , 2.0271  ],
        [0.962   , 2.682   ],
        [1.1693  , 2.9276  ],
        [0.8122  , 2.9992  ],
        [0.9735  , 3.3881  ],
        [1.25    , 3.1937  ],
        [1.3191  , 3.5109  ],
        [2.2292  , 2.201   ],
        [2.4482  , 2.6411  ],
        [2.7938  , 1.9656  ],
        [2.091   , 1.6177  ],
        [2.5403  , 2.8867  ],
        [0.9044  , 3.0198  ],
        [0.76615 , 2.5899  ],
        [0.086405, 4.1045  ]]),
 'y': array([[1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [1],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1]], dtype=uint8)}

我们将其用散点图表示,其中类标签由符号表示(+表示正类,o表示负类)。

data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']

positive = data[data['y'].isin([1])]
negative = data[data['y'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

在这里插入图片描述

from sklearn import svm
svc = svm.LinearSVC(C=1, loss='hinge', max_iter=1000)
svc
LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='hinge', max_iter=1000, multi_class='ovr',
     penalty='l2', ra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

混子王江江

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值