1. 精准提问法
用途:避免模糊回答,获得更具体的答案。
示例:
❌ 模糊提问:“如何学好英语?”
✅ 精准提问:“请给我一个适合职场新人、每天30分钟的3个月英语学习计划,重点提升商务口语。”
原理:AI需要明确场景、目标、限制条件才能输出高质量答案。
2. 分步执行指令
用途:拆分复杂任务,让AI逐步解决问题。
示例:
“我现在需要策划一场校园环保活动,请按以下步骤思考:
-
分析大学生参与环保活动的痛点
-
列出3个创新活动形式
-
为最佳方案设计执行时间表”
3. 角色扮演模式
用途:让AI模拟专家身份,提升回答专业性。
示例:
“你现在是资深营养师,请为糖尿病患者设计一周低GI食谱,附热量计算。”
常用角色:教师、产品经理、编剧、心理咨询师等。
4. 模板化输出
用途:规范答案格式,直接获得可用内容。
示例:
“用Markdown表格对比Python和JavaScript在Web开发中的优缺点,包含学习难度、应用场景、薪资水平三列。”
5. 思维链激活
用途:展示思考过程,适合解决复杂问题。
示例:
“请逐步解释:为什么区块链技术能保证数据不可篡改?用类比方式说明,最后总结关键要点。”
6. 答案迭代指令
用途:优化不满意的回答。
示例:
第一版:“写一句防晒霜广告文案” → 输出后补充:
“加入数字对比和紧迫感,面向25+女性群体,加入emoji”
7. 多选项生成
用途:快速获取创意灵感或解决方案。
示例:
“为智能水杯设计10个吸引Z世代的功能卖点,要求结合健康管理和社交属性。”
8. 限制条件法
用途:控制答案范围和形式。
示例:
“用小学生能理解的语言,3句话解释什么是人工智能,禁止使用专业术语。”
9. 反向提问技
用途:当不知如何提问时,让AI帮你完善问题。
示例:
“我想研究新能源汽车发展趋势,但不知道该怎么分析,请问需要哪些维度的数据?”
10. 混合模式指令
用途:综合运用多种功能解决复杂需求。
示例:
“先总结《人类简史》第三章核心观点(300字内),然后用这些观点分析ChatGPT对社会的影响,最后以辩论赛一辩陈词格式呈现。”