Option3X 5G 全网部署(基于 IUV_5G 软件)

本文详细介绍了无线网络建设的五个关键步骤:组网选型(以非独立组网为例)、拓扑规划、链路预算、站点选址和设备配置。通过实例展示了如何进行网络元素布局、连接以及站点和设备参数设置,为网络规划和建设提供清晰指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

步骤一:组网选型

步骤二:拓扑规划

步骤三:链路预算

步骤四:站点选址

步骤五:设备配置


步骤一:组网选型

以兴城市为例选择非独立组网架构

步骤二:拓扑规划

一般的非独立组网网元架构如下图所示:

点击拓扑规划 --> 依次点击MME、SGW、PGW、HSS并按住拖动到核心网机房 --> 点击交换机SW 并拖到核心网机房(选择两个交换机可以提高网络容错性)

 依次点击各大网元并将它们与交换机(SW)连接起来:

将 SPN、路由器(RT)、OTN拖动到承载中心机房、汇聚机房以及骨干机房,并进行连接(OTN 和 OTN 进行连接):

 在 A 站点机房设立 SPN ,B站点机房设立 CUDU、BBU,并进行连接:

至此,网络拓扑规划完成

步骤三:链路预算

拓扑规划完毕后点击下一步进行链路预算(包括无线网、核心网、承载网):

步骤四:站点选址

点击网络规划中的站点选址,在四水市、建安市以及兴城市进行站点选址:

设置站点并双击设备进行参数配置:

  

步骤五:设备配置

完成链路预算后点击设备配置:

根据计算的结果选择设备型号(大型、中型、小型等):

参考资料


IUV 官网

### IUV5G 全网配置指南与最佳实践 #### 网络架构设计与部署 IUV5G全网配置涵盖了从网络规划、站点选址到设备配置、数据配置、业务调试以及网络优化的每一个关键步骤,旨在为用户提供一个高度仿真的实训平台,让学习者能够在虚拟环境中掌握5G网络构建的全过程[^1]。在网络架构设计方面,两个城市采用NSA或SA组网模式,涵盖Opiton3x、Option2两种选项,无线网采用CU、DU合设或分离部署模式。承载网设计需符合运营商网络架构设计要求,在网络层次上分为接入层、区域汇聚层、骨干汇聚和核心层,实现业务逐级收敛。承载网各层级设备间必须采用环型组网实现业务的冗余保护。需根据网络规划设计完成设备部署及数据配置[^2]。 #### 设备配置与数据管理 在进行IUV5G全网配置时,特别需要注意的是两个城市中已有设备、连线、参数均不可修改,赛事已设置自动监控,对原有配置数据改动一处扣5分,直到该项总分扣完为止。这意味着在配置过程中必须严格遵守预设规则,确保所有操作都在不更改现有配置的前提下完成[^2]。 #### 网络优化与性能提升 为了实现网络性能的优化,可以借鉴大数据专家级技能模型与学习指南中的方法和技术,例如使用Hadoop框架进行大规模数据处理和分析,这有助于深入理解网络运行状态,进而采取有效措施提升网络效率[^3]。同时,空间域方法如灰度变换、直方图均衡化、滤波等图像处理技术也可启发于网络信号处理领域,通过调整信号强度、减少干扰等方式改善网络质量[^4]。 #### 代码示例 以下是一个简化的Python脚本示例,用于模拟网络信号强度计算和干扰水平估计,虽然不是直接应用于IUV5G全网配置,但展示了如何利用编程手段辅助网络规划与优化: ```python def simulate_network_coverage(area_map, user_density): coverage_prediction = {} for location in area_map: signal_strength = calculate_signal(location) interference_level = estimate_interference(user_density[location]) coverage_prediction[location] = { &#39;signal&#39;: signal_strength, &#39;interference&#39;: interference_level } return coverage_prediction def calculate_signal(location): return 100 - (distance_to_nearest_base_station(location) * 2) def estimate_interference(density): if density < 50: return &#39;low&#39; elif density < 200: return &#39;medium&#39; else: return &#39;high&#39; simple_area_map = [&#39;A&#39;, &#39;B&#39;, &#39;C&#39;] user_density_data = {&#39;A&#39;: 75, &#39;B&#39;: 300, &#39;C&#39;: 150} coverage_results = simulate_network_coverage(simple_area_map, user_density_data) print(coverage_results) ``` 此脚本提供了一个基础框架,可以根据具体需求进一步扩展,例如加入更多影响信号强度的因素、更复杂的干扰模型等,以更好地支持IUV5G全网配置与优化工作。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一马归一码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值