循环移位网络设计

  1. 总体架构
    1. 模块描述

循环移位网络模块(模块名:VAL_CS_PROC),对输入数据(in_data)做循环移位处理,两个cycle即可输出数据。

Fig 1 循环移位模块顶层

      1. 设计要求
  1. 00】 支持对data_num个有效数据做循环移位处理,每个数据位宽为10bit1<=data_num<=384);移位值shift_val满足0<=shift_val<=data_numshift_val表示循环移位的数据个数(每个数据10bit)。
  2. 01】 输入和输出数据位宽为384*10bit,当有效数据个数data_num小于等于192时,输入数据中包含2data_num个数据,支持同时对2data_num个数据做循环移位处理,且两组处理相互独立,可以不同步。
  3. 02】 有效数据个数data_num大于192时,data_num个有效数据放在输入输出数据的低位([data_num*10-1 : 0]);有效数据个数data_num小于等于192时,有效数据分别在2组数据的低位([data_num*10-1 : 0][data_num *10+1920-1 : 1920])。
  4. 03】 支持根据输入指示信号判断数据左移或是右移。
  5. 04】 移位值、有效数据个数、移位方向以in_vld为随路有效信号,in_vld1表示参数有效,输入数据固定在参数下一拍到来。
  6. 05】 支持输出循环移位后数据以out_vld作为随路有效信号,out_vld1表示数据有效,data_num大于192时,两组out_vld同时拉高表示数据有效。
  7. 06】 输出时,无效位需要全部为零。
      1. 整体架构

Fig 2 循环移位网络模块架构框图

      1. 端口信号

Table 1 端口信号表

端口

方向

位宽/bit

说明

rst_n

输入

1

复位信号,低有效

clk

输入

1

输入时钟

in_vld_0

输入

1

第一组输入参数随路有效指示

in_vld_1

输入

1

第二组输入参数随路有效指示

data_num_0[8:0]

输入

9

第一组有效数据个数,in_vld_0=1时有效

data_num_1[8:0]

输入

9

第二组有效数据个数,in_vld_1=1时有效

val_r_l_ind_0

输入

1

第一组左移右移指示,为1时表示左移(即向高位移位),为0时表示右移(即向低位移位),in_vld_0=1时有效

val_r_l_ind_1

输入

1

第二组左移右移指示,为1时表示左移(即向高位移位),为0时表示右移(即向低位移位),in_vld_1=1时有效

shift_value_0[8:0]

输入

9

第一组循环移位数据个数

shift_value_1 [8:0]

输入

9

第二组循环移位数据个数

in_data[384*10-1:0]

输入

3840

输入数据,in_vld下一拍有效

out_vld_0

输出

1

第一组输出数据随路有效指示,

out_vld_1

输出

1

第二组输出数据随路有效指示

out_data[384*10-1:0]

输出

3840

输出数据,out_vld当拍有效

    1. 接口时序
      1. 寄存时序图

由Fig3可见,框图中参与移位的输入信号都是寄存后使用。

Fig 3 寄存时序图

      1. 输出时序图

Fig 4可以得到(in_vld 到 out_vld,含regin/regout)性能为2 cycle。

Fig 4 输出时序图

  1. barrel_shifter子模块详细设计
    1. barrel_shifter子模块描述

这个架构实现了高效的对数移位结构,通过多级移位器实现任意位移量,同时保持O(log n)的时间复杂度。参数化设计使其能适应不同数据规模和位宽需求。

  1. 对数移位架构:
  1. 将大位移分解为$clog2(MAX_NUM)级(log₂384 ≈ 8.6 → 9级);
  2. 每级处理2的幂次方位移(1, 2, 4...256个数据项);
  3. 每级仅需1MUX选择器,大幅降低逻辑深度;
  1. 并行处理:
  1. 左移和右移操作独立并行处理;
  2. 每级内所有数据通道并行计算;
  3. 关键路径:$clog2(MAX_NUM)MUX + 1OR + 1AND(远远小于30级逻辑);

Fig 5 barrel_shifter架构图

  1. 功能仿真

Table 2 功能仿真测试表

测试案例

方案描述

是否通过

TEST1

data_num = 8,数据通道0,左移2

通过

TEST2

data_num = 8,数据通道0,右移2

通过

TEST3

data_num = 8,数据通道1,左移2

通过

TEST4

data_num = 8,数据通道1,右移2

通过

TEST5

data_num = 8,数据通道01同时独立输入,通道0:右移3位,通道1:左移2

通过

TEST6

data_num = 200,数据通道1,2约束一致,左移50

通过

TEST7

边界测试:data_num = 1,数据通道1,左移2

通过

  1. PPA优化

Table 3 180nm工艺库PPA测试表

类别

Ax(um^2)

数据延迟

最小面积

6083924.000000

2 cycle

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super_WY_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值