机器学习之感知器学习算法原理及公式推导

Perceptron算法是一种用于线性可分样本的分类方法,通过寻找一个超平面来划分两类数据。它基于神经元模型,利用权重和阈值对输入进行加权求和并比较阈值来决定输出。当样本误分类时,权重会进行调整以逐步优化分类效果。损失函数表示为被错分样本的数量,但非连续性使得直接优化困难。文章讨论了损失函数的另一种形式,当样本被错分时,损失为负的内积,目标是找到使损失最小化的权重向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Perceptron Learning Algorithm

一、条件

样本集线性可分

二、原理

寻找一个超平面/直线将两类样本分开

h(xi1,xi2,⋯ ,xid)=sign(∑j=1dwjxij−θ)h(x_{i1},x_{i2},\cdots,x_{id}) = \text{sign}(\sum\limits_{j=1}^d w_jx_{ij} -\theta)h(xi1,xi2,,xid)=sign(j=1dwjxijθ) , i=1,2,⋯ ,ni=1,2,\cdots,ni=1,2,,n

wjw_jwj 可看成生物神经元的权重,xijx_{ij}xij 可看成生物神经元的刺激,θ\thetaθ 为阈值。当 ∑j=1dwjxij>θ\sum\limits_{j=1}^d w_jx_{ij}>\thetaj=1dwjxij>θ 时神经元兴奋,∑j=1dwjxij<θ\sum\limits_{j=1}^d w_jx_{ij} <\thetaj=1dwjxij<θ 时神经元抑制。因此该方法称为感知器学习算法

xi0=1x_{i0}=1xi0=1 , w0=θw_0=\thetaw0=θ , i=1,2,⋯ ,ni = 1,2,\cdots,ni=1,2,,nx⃗i=[1xi1xi2⋯xin]T\vec x_i = \begin{bmatrix} 1&x_{i1}&x_{i2}&\cdots&x_{in} \end{bmatrix}^Txi=[1xi1xi2xin]T , w⃗=[θw1w2⋯wn]T\vec w = \begin{bmatrix} \theta&w_1&w_2&\cdots&w_n \end{bmatrix}^Tw=[θw1w2wn]Th(x⃗i)=sign(w⃗T⋅x⃗i)h(\vec x_i)=\text{sign}(\vec w^T\cdot\vec x_i)h(xi)=sign(wTxi)

  1. 构造损失函数

    1. L(h)=∑i=1nI(h(x⃗i)≠yi)L(h) = \sum\limits_{i=1}^n\mathbb{I}(h(\vec x_i) \neq y_i)L(h)=i=1nI(h(xi)=yi)

      即当前假设下被错分样本的个数,但此函数不连续,难以用数学方法求最优值
    2. L(w⃗)=−∑x⃗∈yw⃗T⋅x⃗L(\vec w) = -\sum\limits_{\vec x\in}y\vec w^T \cdot\vec xL(w)=xywTx

      当样本被错分时,yyyw⃗T⋅x⃗\vec w^T\cdot\vec xwTx 异号
  2. 求损失函数取最小值 0 时对应的假设 hhh

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值