- 博客(7)
- 收藏
- 关注
原创 掉坑记录(Eigen库的旋转矩阵转换成四元数)
博主在进行旋转矩阵转换成四元数时使用了Eigen库的函数:它是直接将RotationMatrix(旋转矩阵)转为RotationMatrix(四元数),我之后直接拿着RotationMatrix(四元数)就用在了后续的计算中,结果在编译时就报错:解决办法,拿个Eigen::Quaterniond变量接住,用这个变量做后续处理:
2024-12-02 20:50:38
311
1
原创 iMAP: Implicit Mapping and Positioning in Real-Time实时隐式建图和定位(论文阅读记录)
传统的基于点云的SLAM系统建出来的图是相对稀疏的,即使是号称稠密的SLAM系统也只是获得的点云更密集些,本质上还是离散的不连续的。而基于占据网格、SDF和TSDF这些隐式表示方法建出来的图又有这些问题:占据网格表达精细度不足且难以表示复杂材质,SDF光影效果和学习能力有限,TSDF色彩和纹理表现弱且对动态场景适应性差。要实现真正的稠密、连续的场景重建,就需要新的隐式表示来表达场景。受到大火的NeRF的启发,作者将NeRF结合进SLAM,用RGB-D输入做出一个实时的重建和定位系统——iMAP。
2024-08-04 22:41:35
1345
1
原创 NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM神经隐式场景编码(论文阅读记录)
作者认为,在这篇论文之前的基于神经隐式表达的稠密视觉SLAM系统大多数要么依赖 RGB-D 传感器,要么需要单独的单目 SLAM 方法进行相机跟踪,并且不能产生高保真密集 3D 场景重建。之所以强调不能依赖RGB-D相机,是因为基于RGB-D相机的系统在室外场景或深度传感器不可用时会失效。同时,对于未观察到的区域,他们很难做出合理的几何估计。当然也存在少数仅用RGB信息来进行相机位姿追踪和神经隐式建图的SLAM系统,但是它们的跟踪和建图流程彼此独立,因为它们依赖于不同的场景表示(比如可能跟踪用SDF表示场景
2024-08-03 17:27:25
982
1
原创 STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in Motion with Neural Rendering
通过多视点(在不同的角度摆多个相机)的视频输入,联合优化两个神经辐射场的参数和一组在每帧对齐两个场的刚性姿势,最后实现新角度、新位置的图像合成(就是训练完成后,可以合成没训练过的视点下,运动物体没去过的位置的画面)
2024-08-02 20:25:30
996
原创 iDF-SLAM: End-to-End RGB-D SLAM with Neural Implicit Mapping and Deep Feature Tracking隐式建图和深度跟踪端到端系统
一种新颖的端到端RGB-D SLAM,iDF-SLAM,采用基于特征的深度神经跟踪器作为前端,采用NeRF风格的神经隐式映射器作为后端。
2024-08-01 22:25:20
996
原创 MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction添加单目几何提示的隐式重建
这篇论文的idea很简单粗暴,就是在其他的重建方法上加几个损失来添加额外的约束。重点就在于理解各种隐式表达方法、知道作者使用现成的单目几何估计模型来给每一帧生成深度图和法向量并且懂之前说的几个损失函数为什么那样定义就OK了。虽然很粗暴,但看起来效果还不错,也不会明显增加训练、推理时间。
2024-08-01 12:46:59
964
1
原创 DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras适用于单目、立体和 RGB-D 相机的深度视觉系统论文阅读记录
这篇论文是将RAFT光流估计法的主要框架用于估计相机位姿和深度图。为此作者专门设计了一个Dense Bundle Adjustment Layer (DBA)——稠密光束法平差层,DBA主要就是为了将ConvGRU预测的投影调整转换为相机的位姿和深度图,就是因为设计了DBA层,才将RAFT对光流的估计改成了对姿态和逆深度图的估计。为了能进行大规模的多帧同时优化而设计了“帧图”
2024-07-31 16:54:02
1971
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人