位运算3 最短Hamilton路径

该博客探讨了一种动态规划策略来解决从0到n-1的最短Hamilton路径问题,其中涉及n个点之间的距离信息。利用位运算和状压dp,通过状态转移矩阵实现高效求解,时间复杂度为O(n^2*2^n),但实际效率更高。博客还提供了C++代码示例进行解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
题目大意:n个点(从0开始),给出任意两点之间的距离,问从0到n-1的最短Hamilton路径。
Hamilton路径:从0到n-1不重不漏地经过每个点恰好一次。

题解:考虑状压dp,用dp[i][j]表示状态为i,最后处于点j的最短路径长度。答案就是dp[(1<<n)-1][n-1]。现在考虑状态如何进行转移。首先dp[1][0]=0,表示最初处于0号点。每次转移,枚举边,取min。由于从0到(1<<n)-1,前面的状态不会由后面的状态得到,故枚举状态时从0到(1<<n)-1即可。转移时需要判断是否合法:即每个点只经过一次。

时间复杂度:O(n2*2^n)。
由于存在许多非法状态,故真正的时间复杂度比O(n2*2^n)小得多。

#include<bits/stdc++.h>
using namespace std;
const int N = 21,INF = 0x3f3f3f3f;
int dp[1<<N][N];
int g[N][N];
int n;
int main(){
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)scanf("%d",&g[i][j]);
    memset(dp,0x3f,sizeof dp);
    dp[1][0]=0;
    for(int i=1;i<(1<<n);i++){
        for(int j=0;j<n;j++){
            if(dp[i][j]>=INF)continue;
            for(int k=0;k<n;k++){
                if(i>>k&1)continue;
                dp[i|(1<<k)][k]=min(dp[i|(1<<k)][k],dp[i][j]+g[j][k]);
                //cout<<(i|(1<<k))<<" "<<k<<" "<<dp[i|(1<<k)][k]<<endl;
            }
        }
    }
    printf("%d\n",dp[(1<<n)-1][n-1]);
    return 0;
}
<think>好的,我现在需要帮助用户解决如何使用C++实现求解汉密尔顿回路的问题。首先,我得回忆一下汉密尔顿回路的定义和相关算法。根据用户提供的引用内容,汉密尔顿回路是经过每个顶点恰好一次且起点和终点相同的回路。这个问题属于NP完全问题,所以没有多项式时间的解法,只能采用一些近似或优化方法。 用户提到他们想用C++实现,所以需要具体的代码结构和算法思路。根据引用[1]中的次算法,可能采用的是贪心或者动态规划的方法。而引用[3]和[4]分别讨论了Hamilton路径和栈实现的汉密尔顿回路,这可能涉及到回溯法或DFS。 首先,我需要考虑如何表示图结构。通常使用邻接矩阵来存储边的权重,这样方便快速访问。接下来,汉密尔顿回路的求解方法,暴力法虽然直接,但时间复杂度是O(n!),对于较大的n不现实。动态规划方法如状态压缩DP可能更高效,例如使用DP[mask][i]表示经过mask表示的节点集合,后到达i节点的路径。这种方法的时间复杂度是O(n²*2^n),对于n较大的情况还是有问题,但比暴力好。 用户提供的引用[2]和[4]提到了回溯法和栈实现,这说明可能需要结合深度优先搜索和剪枝优化。回溯法可以遍历所有可能的路径,但在遇到不可能更优的情况时提前返回,减少计算量。 所以,可能的实现步骤是: 1. 输入图的邻接矩阵。 2. 初始化DP表或使用回溯法遍历所有可能的路径3. 记录当前路径的权重,若超过已知优解则剪枝。 4. 遍历完成后输出路径及其权重。 在代码实现时,需要注意状态压缩的技巧,用位运算来表示访问过的节点集合。比如,mask的每一位代表一个节点是否被访问过。同时,递归或迭代过程中需要维护当前路径长度和已访问的节点。 另外,引用[4]中的栈实现可能用于管理递归调用或路径节点,避免递归过深导致的栈溢出问题。不过,对于汉密尔顿回路,递归回溯可能是更直接的实现方式。 总结可能的代码结构: - 使用递归回溯,尝试每个节点作为起点。 - 对于每个节点,尝试所有未访问的相邻节点。 - 当所有节点都被访问后,检查是否能回到起点形成回路,并更新路径。 - 剪枝策略:如果当前路径长度已经超过已知路径,则停止继续搜索该分支。 不过,这样的方法对于较大的n(比如超过20个节点)可能效率极低。因此,可能需要结合动态规划来优化,如状态压缩DP。 现在需要将思路转化为具体的C++代码,使用动态规划方法。例如,定义一个二维数组dp[mask][i],其中mask是位掩码,i是当前节点。初始化时,mask只有第i位为1,其余为0,dp[1<<i][i] = 0。然后,遍历所有mask状态,对于每个状态中的后一个节点i,尝试所有未访问的节点j,更新dp[mask | (1<<j)][j] = min(dp[mask | (1<<j)][j], dp[mask][i] + graph[i][j])。后,检查所有节点都被访问的情况,并加上回到起点的边权重,找到小值。 这样的代码结构虽然高效,但需要处理位运算和状态转移,可能对用户来说比较复杂。因此,在解释时需要详细说明每一步的逻辑,并提供代码注释。 此外,用户可能还关心如何优化该
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值