【python】pandas库入门

本文介绍了Pandas库中的Series类型及其创建方法,包括通过标量、字典、列表和ndarray创建。详细讲解了Series的基本操作,如类似ndarray和字典的操作,并演示了如何根据索引对齐和更改数值。此外,还展示了DataFrame的创建,如通过列表加字典的方式。文章最后提到了Pandas库中的一些基本操作,如重新排列DataFrame的列,以及数据的基本统计分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Series

1.1 Series 类型的创建

在这里插入图片描述

import pandas as pd
import numpy as np
# 用标量来创建
a=pd.Series(4,index=["a","b"])     # index不可以省略

# 用字典来创建
b=pd.Series({"a":13,"b":23})

# 用列表来创建
c=pd.Series([33,45],index=["a","b"])  # index可以省略

# 用ndarray来创建
d=pd.Series(np.arange(5),np.arange(9,4,-1)) #起点为9,终点为4,步长为-1

1.1 Series 类型的基本操作

1.1.1 Series 的操作类似于 ndarray

在这里插入图片描述
在这里插入图片描述

1.1.2 Series 的操作类似于字典

在这里插入图片描述
在这里插入图片描述

1.1.3 Series 的其他操作

可以根据索引对齐,可以更改其内储存的数值,Series 对象本身和索引都有名字(而且可以更改)
在这里插入图片描述

2.DataFrame

在这里插入图片描述

2.1 DataFrame 类型的创建

这个创建方式有许多种,学到其他的再补充吧,一下也记不住太多。

#用列表+字典
c=pd.DataFrame({"a":[1,2,3],"b":[9,8,7]})

3.pandas库的操作

3.1 改变Series DataFrame

3.1.1 增加或重排

#重新排列
c=pd.DataFrame({"a":[1,2,3],"b":[9,8,7]})
d=c.reindex(columns=['b','a'])   # 不会改变原来的c

在这里插入图片描述

3.1.2 删除

在这里插入图片描述

3.2 运算法则

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.数据的基本统计分析

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值