ENVI5.6如何将影像的背景部分设置为透明

操作过程

       在经过正射校正后,影像边缘的背景为黑色,在ENVI中显示为:

       希望将黑色的背景部分设置成透明,操作方法为:

       (1)在Toolbox中选择Raster Management工具,其中有Edit ENVI Header工具,双击打开并选择要处理的影像;

       (2)点击Add,增加Data Ignore Value属性,增加后可以看到在Edit ENVI Header对话框中出现Data Ignore Value属性设置(一般是在最后的位置);

       (3)将该值设置成0,即可看到影像的背景部分显示为透明;

一些思考

       (1)经过上述处理,我们会发现影像变亮了,但实际上影像的像元值并没有发生改变,仅仅是将背景值设置为0后,ENVI对影像的自动拉伸方法进行了改变,所以肉眼上影像会变亮或者变暗,也可能没有明显改变,总之影像的像元值是不会变动的!!!

       (2)使用Cursor Value查看像元值,普遍在10的2次方数量级,这是因为ENVI在预处理过程中将影像保存为了16位整型,将影像像元值放大了10000倍。这个数值可以在刚刚的Edit ENVI Header部分看到,即影像像元值将地物对应反射率放大10000倍存储。

 

 (3)ENVI5.3中的操作方法与5.6类似,但Edit ENVI Header界面发生了一定改变,具体可以参考这篇博文:【ENVI解决经验】裁剪后背景改为白色(透明)_envi背景值如何设置为透明-CSDN博客

### ENVI中去除土壤背景的方法 在ENVI软件中,可以通过多种方式实现土壤背景的去除。以下是具体的技术细节: #### 方法一:基于人工目视解译 人工目视解译是一种传统的土壤背景去除方法,主要依靠专业领域知识和操作者的经验来识别并移除不需要的部分[^1]。此方法具有直观性的优点,适合用于复杂场景下的精确编辑。 #### 方法二:利用ROI构建掩膜 通过定义感兴趣区域(Region of Interest, ROI),可以有效屏蔽掉不感兴趣的背景部分。具体流程如下: 1. **创建ROI** 在目标图像上手动绘制或自动提取ROI,并将其保存为文件。 2. **生成掩膜** 使用`Basic Tools → Masking → Build Mask`功能加载已保存的ROI作为输入源,完成掩膜的创建过程[^2]。 3. **应用掩膜** 调用`Apply Mask`工具将上述生成的掩膜作用到原图之上。在此过程中可以选择不同的掩膜值(如0表示黑色填充;255代表白色替代)以适应特定需求。 #### 方法三:借助ArcMap中的掩膜函数设定无数据值 另一种可行方案是在ArcGIS平台内完成相应处理工作。其核心思路在于向各波段赋予恰当的“无数据”标记从而达到隐藏指定像素的目的。实际操作步骤包括但不限于启动影像分析面板之后插入掩膜函数以及配置好各个通道上的数值参数等内容[^3]。 ```python # 示例Python脚本展示如何批量修改TIF文件头信息以便配合某些地理信息系统软件更好地读取这些经过预处理的数据集 import os from PIL import Image def set_nodata_value(input_folder, output_folder, nodata_val=0): if not os.path.exists(output_folder): os.makedirs(output_folder) for filename in os.listdir(input_folder): img_path = os.path.join(input_folder, filename) with Image.open(img_path) as im: bands_data = list(im.getdata()) new_bands_data = [] for pixel in bands_data: if all(v == 0 for v in pixel): # Assuming black is the background color to be removed. new_pixel = tuple([nodata_val]*len(pixel)) else: new_pixel = pixel new_bands_data.append(new_pixel) updated_im = Image.new(im.mode, im.size) updated_im.putdata(new_bands_data) save_to = os.path.join(output_folder, filename) updated_im.save(save_to) set_nodata_value('path/to/input', 'path/to/output') ``` 以上介绍了几种主流技术手段帮助用户掌握如何去掉遥感图片当中的泥土成分干扰项。值得注意的是,在选取最合适的策略前应当充分考虑项目具体情况诸如精度要求、计算资源限制等因素综合评判后再做决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值