Pointpillars论文:https://arxiv.org/abs/1812.05784
代码:GitHub - open-mmlab/OpenPCDet: OpenPCDet Toolbox for LiDAR-based 3D Object Detection.
算法复现:基于kitti数据集的3D目标检测算法的训练流程_mini kitti 数据集-CSDN博客
文献理解:PointPillars文献理解_pillar feature net-CSDN博客
复现结果:Pointpillar算法复现结果分析_kitti ap40 results-CSDN博客
参考博客:(三)PointPillars论文的MMDetection3D代码解读——数据处理篇_pointpillars代码-CSDN博客
目录
(二)pointpillars_hv_secfpn_kitti.py
(二)基类Det3DDataset的parse_data_info()函数
(三)KittiDataset的parse_ann_info函数
(四)基类Det3DDataset的parse_ann_info()函数
一、简介

PointPillars 是一个来自工业界的模型,整体的思想是基于图片的处理框架,直接将点云从俯视图的视角划分为一个个的立方柱体(Pillars),从而构成了伪图片数据,然后再使用2D检测框架进行特征提取和预测得到检测框,从而使得该模型在速度和精度都达到了一个很好的平衡。 PointPillars 的网络结构如图1.1所示。
二、配置文件
(一)kitti-3d-3class.py
代码存放于 mmdetection3d/config/_base_/datasets/kitti-3d-3class.py

代码全文如下:
# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)
# data_root = 's3://openmmlab/datasets/detection3d/kitti/'
# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
classes=class_names,
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
backend_args=backend_args)
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='kitti_infos_train.pkl',
data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR',
backend_args=backend_args)))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR',
backend_args=backend_args))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(pts='training/velodyne_reduced'),
ann_file='kitti_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR',
backend_args=backend_args))
val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox',
backend_args=backend_args)
test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
以下是分部分解读:
# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)
这里是kitti数据集的配置,其中数据类型是kitti的数据集(kittiDataset)、数据根目录在data/kitti、类别名称为“行人、骑行者、汽车”、第四行为点云范围、输入形式为激光雷达【未使用相机视觉】、metainfo是元信息,确定了类别名称。
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
classes=class_names,
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6),
points_loader=dict(
type=LoadPointsFromFile,
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
backend_args=backend_args)
这里是kitti_dbinfos_train.pkl标注文件的读取,data_root定义数据存放的目录、info_path定义信息的路径。
train_dataloader = dict(
batch_size=6,
num_workers=4,
persistent_workers=True,
sampler=dict(type=DefaultSampler, shuffle=True),
dataset=dict(
type=RepeatDataset,
times=2,
dataset=dict(
type=KittiDataset,
data_root=data_root,
ann_file='kitti_infos_train.pkl',
data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR',
backend_args=backend_args)))
在train_dataloader中定义了数据加载部分的信息,其中Batch_size(批处理大小)设置为6(即一次性处理6位数据),num_workers定义了工作区间的大小为4。
data_root定义数据集的路径、ann_file定义标注文件的路径、data_prefix定义点云文件的路径、pipeline这里用于定义train_pipeline负责读取点云文件和标注文件以及一些数据增强的操作。
train_pipeline定义如下:
train_pipeline = [
dict(
type=LoadPointsFromFile,
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4,
backend_args=backend_args),
dict(type=LoadAnnotations3D, with_bbox_3d=True, with_label_3d=True),
dict(type=ObjectSample, db_sampler=db_sampler),
dict(
type=ObjectNoise,
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),
dict(type=RandomFlip3D, flip_ratio_bev_horizontal=0.5),
dict(
type=GlobalRotScaleTrans,
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range),
dict(type=ObjectRangeFilter, point_cloud_range=point_cloud_range),
dict(type=PointShuffle),
dict(
type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
第一个dict字典用于读取点云文件,第二个dict用于读取标注文件,第三到第九个dict用于点云数据的增强,最后一个dict将点云数据进行打包。
在val_dataloader和test_dataloader中的pipeline都以test_pipeline赋值,下面看test_pipeline定义:
test_pipeline = [
dict(
type=LoadPointsFromFile,
coord_type='LIDAR',
load_dim=4,
use_dim=4,
backend_args=backend_args),
dict(
type=MultiScaleFlipAug3D,
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type=GlobalRotScaleTrans,
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type=RandomFlip3D),
dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range)
]),
dict(type=Pack3DDetInputs, keys=['points'])
]
一共三个字典定义,第一个dict用于读取点云文件,第二个dict用于点云数据的增强,第三个dict将点云数据进行打包。
(二)pointpillars_hv_secfpn_kitti.py
代码路径:mmdetection3d/config/_base_/models/pointpillars_hv_secfpn_kitti.py,全部代码:
voxel_size = [0.16, 0.16, 4]
model = dict(
type='VoxelNet',
data_preprocessor=dict(
type='Det3DDataPreprocessor',
voxel=True,
voxel_layer=dict(
max_num_points=32, # max_points_per_voxel
point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1],
voxel_size=voxel_size,
max_voxels=(16000, 40000))),
voxel_encoder=dict(
type='PillarFeatureNet',
in_channels=4,