停更了好久终于回来了(其实是因为博主去备考期末了hh)
这一篇接着(五)的第七章开始讲述第八章的内容。第八章主要介绍的是三维目标检测的高效标签。
目录
第八章 三维目标检测高效标签
在这个章节里,我们介绍一些三维目标检测高效标签的方法。在前几个章节中,我们通常假设三维检测器是在全监督下进行训练的,且是在特定数据域和充足大量的上下文的情况下进行的。然而,在现实世界的应用中,三维目标检测方法不可避免地会遇到泛化能力差和缺少上下文的问题。为了解决这些问题,高效标签化的技术就能够应用于三维目标检测,包括三维目标检测的域适应(第一节)、弱监督学习(第二节)、半监督学习(第三节)和自监督学习(第四节)。我们将会在下面几个章节中介绍这些方法。
一、域适应
(一)问题和挑战
域间隙在数据收集过程中是普遍存在的。不同的传感器设置和放置,不同的地理位置以及不同的天气都有可能得到完全不同的数据域。在大部分情况中,在特定域中训练的三维目标检测器比在其他域中训练的检测器性能更差。人们提出了许多技术来解决三维目标检测中域适应的问题,比如采用源和目标域的一致性,以及在目标域中自训练。然而,大部分方法仅仅注重解决某个特定的域转换问题。设计一个域适应方法,这种方法可以应用于三维目标检测中任意一个域转换任务,这将是一个有前途的研究方向。三维目标检测域适应方法阐述图如下:
方法分类如下表:
(二)跨传感器域适应
不同的数据集有着不同的传感器设置,比如在nuScenes数据集上采用的32光束的激光雷达VS在KITTI数据集上采用的64光束的激光雷达, 并且数据也在不同的地理位置收集,比如KITTI数据集是在德国收集的,而Waymo是在美国收集的。这些因素都会导致不同数据集间产生严重的域间隙,并且在数据集上训练的检测器在其他数据集上测试时通常性能较差。Wang等人的一项开创性工作就是观察到了不同数据集之间的间隙,并且引入了一种统计归一化的方法来处理这些间隙。下面许多工作也都采用了自训练的方法解决域适应的问题。在这些方法中,在源数据集上预训练的检测器将为目标数据集引入伪标签,并且会在带有伪标签的目标数据集上重新训练。这些方法主要在获取更高质量的伪标签上做出了改进,比如Saltori提出了一种范围和检测策略,Yang引入了一种记忆库,Fruhwirth-Reisinger等人采用场景流应用,以及You等人采用重放来增强伪标签的质量。除了自训练方法,也存在一些论文在源和目标域之间建立对齐。域对齐通过规模意识和范围意识对齐策略(这是Zhang等人提出的),多级别一致性