本章紧接上一章内容,讲述第九章的内容:在驾驶系统中的3D目标检测。
目录
第九章 驾驶系统中的3D目标检测
在本章节中,我们将会介绍驾驶系统中3D目标检测存在的一些严重问题。首先第一节,我们会回顾和分析三维目标检测以端到端方式和其他任务如追踪、策略预测、移动规划、定位一同训练的方法。第二节,我们会介绍为三维目标检测和自动驾驶所设计的仿真系统。第三节,我们会深入调查三维目标检测器和安全意识三维目标检测的鲁棒性话题。第四节,我们会回顾协同三维目标检测相关方法。
一、自动驾驶端到端学习
(一)问题和挑战
三维目标检测是感知系统重要的组成部分,三维目标检测器的性能将对跟踪、预测和规划等下游任务有着深远的影响。因此从系统的角度来看,将三维目标检测模型和其他感知任务及下游任务联合训练对自动驾驶来说是一个更好的选择。一项开放的挑战就是如何在一个统一的框架中涵盖到所有的驾驶任务并以端到端的方式联合训练这些任务。端到端自动驾驶阐述如下:
(二)联合感知和预测
有许多工作以端到端的方式学习感知和追踪三维目标并预测他们未来的策略。FaF等人提出的就是一项非常有意义的工作,他们提出了采用单个三维卷积网络联合推理三维目标检测、追踪和策略预测。这种设计模式被许多论文加以改进:例如Casas等人采用图信息,Li等人引入交互式Transformer,Zhang等人设计了一种时空交互网络,Wu等人提出了一种时空金字塔网络,Liang等人以一个圈完成所有任务,Phillips等人将定位任务也涵盖到系统中。
(三)联合感知、预测和规划
人们在将感知、预测和规划放入一个统一的框架的工作中作出了许多努力。相比于联合感知和预测的方法,整个系统能够从规划者的反馈中获益,这得益于将运动规划加入端到端管道中。人们提出了许多技术方法来改进这个框架,例如Sadat介绍了一种语义占用地图来生成可解释的中间表示,Wei等人将空间注意合并到框架中,Zeng等人提出了一种深度架构网络,Casa等人提出了无图方法,Cui等人提出了一组不同的未来轨迹。
(四)自动驾驶端到端学习
许多方法尝试构建一个完整的端到端自动驾驶系统,在这个系统中自驾车辆循环采用传感器输入并顺序执行感知、预测、规划和运动控制,最终为驾驶生成驾驶和速度信号。Boja