上市公司年报数字化词频统计Python代码&数据2010-2023

数字化转型是以数字化技术为核心,从操作、管理、服务等多个角度,对不同领域进行全方位的数据分析、优化和应用。从年报MD&A提取领域词频进行分析已经是近两年的热点话题,本文以2010-2023年年报为例,进行数字化词频统计,完整数据代码@“经管有数”。

一、参考文献

- **吴非, 胡慧芷, 林慧妍,等. 企业数字化转型与资本市场表现——来自股票流动性的经验证据[J]. 管理世界, 2021, 37(7):15.**
    
    * 吴非(2021)的五个维度: 人工智能技术、大数据技术、云计算技术、区块链技术、数字技术运用
        * 人工智能技术:人工智能、商业智能、图像理解、投资决策辅助系统、智能数据分析、智能机器人、机器学习、深度学习、语义搜索、生物识别技术、人脸识别、语音识别、身份验证、自动驾驶、自然语言处理
        * 大数据技术:大数据、数据挖掘、文本挖掘、数据可视化、异构数据、征信、增强现实、混合现实、虚拟现实
        * 云计算技术:云计算、流计算、图计算、内存计算、多方安全计算、类脑计算、绿色计算、认知计算、融合架构、亿级并发、EB级存储、物联网、信息物理系统
        * 区块链技术:区块链、数字货币、差分隐私技术、智能金融合约
        * 数字技术运用、移动互联网、工业互联网、移动互联、互联网医疗、电子商务、移动支付、第三方支付、NFC支付、智能能源、B2B、B2C、C2B、C2C、
在处理上市公司年报时,可以使用Python中的jieba库进行关键词提取和词频统计的程序。以下是一个年报样例的处理步骤: 首先,我们需要将年报文本读入程序中。假设该年报的文本保存在一个名为"annual_report.txt"的文本文件中,我们可以使用Python的文件读取功能来读取该文件,将其内容存储在一个字符串变量中。 接下来,需要使用jieba库来进行中文分词。首先,我们需要使用jieba的初始化函数进行分词器的初始化,并加载自定义的词典(如果有)。然后,使用jieba的分词函数来对年报文本进行分词处理。分词结果可以保存在一个列表变量中。 之后,我们可以利用Python数据结构来进行数据处理和统计。我们可以使用一个字典变量来存储每个关键词的词频统计结果。遍历分词结果列表,对每个分词进行判断,如果分词已经在字典中,我们就将对应的词频加1;如果分词不在字典中,我们就在字典中新增该关键词,并将其词频设置为1。 最后,我们可以按照词频进行排序,以便找出出现频率最高的关键词。可以使用Python的排序函数对字典进行排序,按照词频降序排列。然后,根据需要,可以选择前几个关键词进行输出显示。 综上所述,使用Python中的jieba库可以实现上市公司年报的关键词提取和词频统计。这个程序可以帮助我们对年报进行数字化处理,并快速地获取关键信息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值