已知经纬度坐标,评价数据空间分布均匀性


基本介绍

1. 可视化分析

通过绘制数据的分布图,可以直观地观察数据是否在空间上均匀分布。

使用Python的matplotlibBasemap库:
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

# 假设数据格式为 [(lat1, lon1), (lat2, lon2), ...]
data = [(34.05, -118.25), (40.71, -74.01), (37.77, -122.42), (47.61, -122.33)]

# 创建地图
m = Basemap(projection='merc', llcrnrlat=-80, urcrnrlat=80, llcrnrlon=-180, urcrnrlon=180, resolution='c')
m.drawcoastlines()
m.drawcountries()
m.drawstates()

# 绘制数据点
lats = [lat for lat, lon in data]
lons = [lon for lat, lon in data]
x, y = m(lons, lats)
m.scatter(x, y, 10, marker='o', color='red')

plt.show()

2. 统计检验

可以使用统计方法来检验数据的空间分布是否均匀。

使用Python的scipy库进行Kolmogorov-Smirnov检验:
from scipy.stats import ks_2samp
import numpy as np

# 假设数据格式为 [(lat1, lon1), (lat2, lon2), ...]
data = [(34.05, -118.25), (40.71, -74.01), (37.77, -122.42), (47.61, -122.33)]

# 提取纬度和经度
lats = [lat for lat, lon in data]
lons = [lon for lat, lon in data]

# 生成均匀分布的随机数据
uniform_lats = np.random.uniform(min(lats), 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值