文章目录
基本介绍
1. 可视化分析
通过绘制数据的分布图,可以直观地观察数据是否在空间上均匀分布。
使用Python的matplotlib
和Basemap
库:
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
# 假设数据格式为 [(lat1, lon1), (lat2, lon2), ...]
data = [(34.05, -118.25), (40.71, -74.01), (37.77, -122.42), (47.61, -122.33)]
# 创建地图
m = Basemap(projection='merc', llcrnrlat=-80, urcrnrlat=80, llcrnrlon=-180, urcrnrlon=180, resolution='c')
m.drawcoastlines()
m.drawcountries()
m.drawstates()
# 绘制数据点
lats = [lat for lat, lon in data]
lons = [lon for lat, lon in data]
x, y = m(lons, lats)
m.scatter(x, y, 10, marker='o', color='red')
plt.show()
2. 统计检验
可以使用统计方法来检验数据的空间分布是否均匀。
使用Python的scipy
库进行Kolmogorov-Smirnov检验:
from scipy.stats import ks_2samp
import numpy as np
# 假设数据格式为 [(lat1, lon1), (lat2, lon2), ...]
data = [(34.05, -118.25), (40.71, -74.01), (37.77, -122.42), (47.61, -122.33)]
# 提取纬度和经度
lats = [lat for lat, lon in data]
lons = [lon for lat, lon in data]
# 生成均匀分布的随机数据
uniform_lats = np.random.uniform(min(lats),