MobileNet V1 理论理解

MobileNet是一种专为移动端和嵌入式设备设计的轻量级卷积神经网络,通过DepthwiseSeparableConvolution(深度可分卷积)大幅减少运算量和参数。DW卷积降低计算复杂度,PW卷积调整通道数。网络引入超参数α和β以灵活控制模型大小和精度。MobileNet相比VGG16在准确率仅轻微下降0.9%,但模型参数减少至1/32。尽管存在卷积核参数浪费的问题,但其在资源受限的环境中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MobileNet网络,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。(相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32)。

网络优点:

Depthwise Convolution结构(大大减少了运算量和参数量),即DW卷积

增加超参数 α和β

传统卷积和DW卷积的不同:

 

 此图摘自:7.1 MobileNet网络详解_哔哩哔哩_bilibili

如果想改变/自定义输出特征矩阵的channel,那只需要在DW卷积后接上一个PW卷积即可,如下图所示,其实PW卷积就是普通的卷积而已(只不过卷积核大小为1)。通常DW卷积和PW卷积是放在一起使用的,一起叫做Depthwise Separable Convolution(深度可分卷积)。

 此图摘自:7.1 MobileNet网络详解_哔哩哔哩_bilibili

在我们mobilenet网络中DW卷积都是是使用3x3大小的卷积核。所以理论上普通卷积计算量是DW+PW卷积的8到9倍。

 

α参数是一个倍率因子,用来调整卷积核的个数,β是控制输入网络的图像尺寸参数

缺点:depthwise部分得到卷积核会废掉,即卷积核参数大部分为0

 参考:

7.1 MobileNet网络详解_哔哩哔哩_bilibili

 MobileNet(v1、v2)网络详解与模型的搭建_霹雳吧啦Wz-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值