Spark-SQL连接Hive 的五种方法

本文介绍了Spark SQL的基本概念、与Hive的关系及其特点。重点讲述了Spark SQL连接Hive的五种方法,包括内嵌Hive、外部Hive、Spark beeline、Spark SQL CLI以及代码操作Hive,详细阐述了每种方法的实施步骤,为实际工作中的数据处理提供了参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章内容仅供参考!

一、 Spark-SQL是什么

Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。

二、 Hive and SparkSQL

SparkSQL 的前身是 Shark,Shark是给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供的快速上手的工具。 Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop 的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:

⚫ Drill

⚫ Impala

⚫ Shark

其中 Shark 是伯克利实验室 Spark 生态环境的组件之一,是基于 Hive 所开发的工具,它修改了内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。

Shark 的出现,使得 SQL-on-Hadoop 的性能比 Hive 有了 10-100 倍的提高。

 

但是,随着 Spark 的发展,对于野心勃勃的 Spark 团队来说,Shark 对于 Hive 的太多依 赖(如采用 Hive 的语法解析器、查询优化器等等),制约了 Spark 的 One Stack Rule Them All 的既定方针,制约了 Spark 各个组件的相互集成,所以提出了 SparkSQL 项目。SparkSQL 抛弃原有 Shark 的代码,汲取了 Shark 的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL 无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓“退一步,海阔天空”。

➢ 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中 获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;

➢ 性能优化方面 除了采取 In-Memory Columnar Storage、byte-code generation 等优化技术 外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;

➢ 组件扩展方面无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩 展。

2014 年 6 月 1 日 Shark 项目和 SparkSQL 项目的主持人 Reynold Xin 宣布:停止对 Shark 的开发,团队将所有资源放 SparkSQL 项目上,至此,Shark 的发展画上了句号,但也因此发展出两个支线:SparkSQL 和 Hive on Spark。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值