很多人都喜爱听歌,以前我们用 MP3 听歌,现在直接通过音乐 App 在线就能听歌。而且,各种音乐 App 的功能越来越强大,不仅可以自己选歌听,还可以根据你听歌的口味偏好,给你推荐可能会喜爱的音乐,而且有时候,推荐的音乐还非常适合你的口味,甚至会惊艳到你!如此智能的一个功能,你知道它是怎么实现的吗?
算法解析
实际上,要解决这个问题,并不需要特别高深的理论。解决思路的核心思想非常简单、直白,用两句话就能总结出来。
-
找到跟你口味偏好相似的用户,把他们爱听的歌曲推荐给你;
-
找出跟你喜爱的歌曲特征相似的歌曲,把这些歌曲推荐给你。
接下来,我就分别讲解一下这两种思路的具体实现方法。
1. 基于相似用户做推荐
如何找到跟你口味偏好相似的用户呢?或者说如何定义口味偏好相似呢?实际上,思路也很简单,我们把跟你听类似歌曲的人,看做口味相似的用户。你可以看我下面画的这个图。我用“1”表示“喜爱”,用“0”笼统地表示“不发表意见”。从图中我们可以看出,你跟小明共同喜爱的歌曲最多,有 5 首。于是,我们就可以说,小明跟你的口味非常相似。
我们只需要遍历所有的用户,对比每个用户跟你共同喜爱的歌曲个数,并且设置一个阈值,如果你和某个用户共同喜爱的歌曲个数超过这个阈值,我们就把这个用户看作跟你口味相似的用户,把这个用户喜爱但你还没听过的歌曲,推荐给你。
不过,刚刚的这个解决方案中有一个问题,我们如何知道用户喜爱哪首歌曲呢?也就是说,如何定义用户对某首歌曲的喜爱程度呢?
实际上,我们可以通过用户的行为,来定义这个喜爱程度。我们给每个行为定义一个得分,得分越高表示喜爱程度越高。