1.相关函数
contours,hierarchy = cv2.findContours(bus_thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
(图片,cv2.RETR_TREE(不重要),算法)
算法: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中。
RETR_EXTERNAL:只检索最外面的轮廓。
RETR CCOMP:检索所有的轮廓,并将他们组织为两层。顶层是各部分的外部边界,第二层是空洞的边界。
RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次。
CHAIN_APPROX_NONE: 以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分
2.实验程序
#轮廓检索
#RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;RETR_EXTERNAL:只检索最外面的轮廓;
#RETR CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;
#CHAIN_APPROX_NONE: 以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。·CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分
import cv2
import argparse
import numpy as np
img = cv2.imread("image/zidane.jpg") #读取图片
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #转换为灰度图
ret,bus_thresh1 = cv2.threshold(img_gray,127,255, cv2.THRESH_BINARY) #二值化
# 应用大津法进行图像分割
ret,thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#提取轮廓
contours,hierarchy = cv2.findContours(bus_thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
contours1,hierarchy1 = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
#绘制轮廓
draw_img=img.copy()
res_img = cv2.drawContours(draw_img,contours,-1,(0,0,255),2)#(图片,轮廓,索引,颜色,厚度)
res_img1 = cv2.drawContours(draw_img,contours1,-1,(0,0,255),2)#(图片,轮廓,索引,颜色,厚度)
cv2.imshow("Or_image",res_img)
cv2.imshow("Dajing_image",res_img1)
cv2.waitKey(0)
cv2.destroyAllWindows()