实用操作 8轮廓检索

1.相关函数

        contours,hierarchy =         cv2.findContours(bus_thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)

       (图片,cv2.RETR_TREE(不重要),算法)

        算法: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中。

        RETR_EXTERNAL:只检索最外面的轮廓。

        RETR CCOMP:检索所有的轮廓,并将他们组织为两层。顶层是各部分的外部边界,第二层是空洞的边界。

        RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次。

        CHAIN_APPROX_NONE: 以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。

        CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分

2.实验程序

#轮廓检索
#RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;RETR_EXTERNAL:只检索最外面的轮廓;
#RETR CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;
#CHAIN_APPROX_NONE: 以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。·CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分
import cv2
import argparse
import numpy as np

img = cv2.imread("image/zidane.jpg")       #读取图片
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #转换为灰度图
ret,bus_thresh1 = cv2.threshold(img_gray,127,255, cv2.THRESH_BINARY)      #二值化
# 应用大津法进行图像分割
ret,thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#提取轮廓
contours,hierarchy = cv2.findContours(bus_thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
contours1,hierarchy1 = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
#绘制轮廓
draw_img=img.copy()
res_img = cv2.drawContours(draw_img,contours,-1,(0,0,255),2)#(图片,轮廓,索引,颜色,厚度)
res_img1 = cv2.drawContours(draw_img,contours1,-1,(0,0,255),2)#(图片,轮廓,索引,颜色,厚度)

cv2.imshow("Or_image",res_img)
cv2.imshow("Dajing_image",res_img1)

cv2.waitKey(0)

cv2.destroyAllWindows()

3.实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

。。,……~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值