Opencv实用操作5 图像腐蚀膨胀

相关函数

腐蚀函数

img1_erosion = cv2.erode(img1,kernel,iterations=1)

(图片,卷积核,次数)

膨胀函数

img_dilate = cv2.dilate(img2,kernel1,iterations=1)

(图片,卷积核,次数)

实验代码

#腐蚀膨胀操作,
import matplotlib.pyplot as plt
import cv2
import numpy as np

img1 = cv2.imread("image/dige.png")       #读取图片
img2 = cv2.imread("image/yuan.png")

kernel = np.ones((3,3),np.uint8)  #卷积核
kernel1 = np.ones((30,30),np.uint8)
img1_erosion = cv2.erode(img1,kernel,iterations=1)#(图片,卷积核,次数)
#腐蚀
img2_erosion = cv2.erode(img2,kernel1,iterations=1)
img2_erosion1 = cv2.erode(img2,kernel1,iterations=2)
img2_erosion2 = cv2.erode(img2,kernel1,iterations=3)
#膨胀
img_dilate = cv2.dilate(img2,kernel1,iterations=1)
img_dilate1 = cv2.dilate(img2,kernel1,iterations=2)
img_dilate2 = cv2.dilate(img2,kernel1,iterations=3)

res_erosion = np.hstack((img2_erosion,img2_erosion1,img2_erosion2))
res_dilate = np.hstack((img_dilate,img_dilate1,img_dilate2))\

cv2.imshow("DIGE",img1_erosion)
cv2.imshow("PIE",res_erosion)
cv2.imshow("PIE1",res_dilate)

cv2.waitKey(0)

cv2.destroyAllWindows()

实验结果

  腐蚀效果

        
                                        腐蚀图                                                  原图

  膨胀效果
                原图
            
                膨胀1,2,3次结果图
                              

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

。。,……~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值